PYB11Generator Documentation
Release 1.0

J. Michael Owen

Apr 23, 2020

Contents:

1 An important caveat about Python versions 3
1.1 Introduction to PYBI1Generator v i ittt it 3
1.2 Functions o e e e e e e e e e e e e e 6
1.3 CIaSSeS . . v v v o e e e e e e e e e e e e e e e e e 9
1.4 EnUMS o e e e e e e e e e e e e e e e 24
1.5 Memory management v v i e 25
1.6 STL CONtAINETS v v vt e o e 27
1.7 Complications and COMMEr CaSES v v v v v vttt et e e e e e e e 28
1.8 PYBllreserved variables e 31
1.9 PYBlldecorators i i e e e e e e e e e e 34
1.10 PYBI11 special functions and classes 0 . i e e e e e e 35
2 Indices and tables 39
Index 41

PYB11Generator Documentation, Release 1.0

PYB11Generator is a python based code generator that creates pybindl 1 code for binding C++ libraries as extensions
in Python. PYB11Generator parses input that is very close to writing the desired interface in native python, turning
this into the corresponding pybind11 C++ code.

Note: Since PYB11Generator blindly generates C++ pybindl1 code, it is essential to understand the pybindl1
package itself as well! In other words, be sure to read and understand the pybindl1 documentation before trying to
go too far with PYB11Generator. The purpose of PYB11Generator is to reduce the burden of writing and maintaining
redundant code when working with pybind11 (such as the trampoline classes required by Overriding virtual functions
in Python), and provide a natural syntax for those already familiar with writing interfaces in Python. However, since
the generated pybind11 code produced by PYB11Generator is what is actually compiled by a C++ compiler to create
the corresponding python package, any errors reported by the compiler will refer to this generated code, and require
understanding pybind11 itself to properly interpret.

Contents: 1

https://github.com/pybind/pybind11
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals

PYB11Generator Documentation, Release 1.0

2 Contents:

CHAPTER 1

An important caveat about Python versions

As currently implemented, PYB11Generator assumes Python 2, and will not work with Python 3 input syntax. This
is due to the fact PYB11Generator grew from an internal utility in the Spheral astrophysics modeling project, which
uses Python 2.* syntax for backwards compatability with Spheral work that predates the existence of Python 3. The
generated pybind11 code itself is not restricted to Python 2 however, so the generated modules should be compatible
with Python 2 or 3 — only the input files to PYB11Generator need to be in Python 2 syntax.

1.1 Introduction to PYB11Generator

Using PYB11Generator to write the interface for a C++ binding is intended to emulate writing that same interface in
Python, so if you’re familiar with Python it should be easy to get started with PYB11Generator. As an example, if we
have a header for a C++ function that looks like:

// A really important function!
int func();

We can define the PYB11Generator prescription for binding this method by writing a Python method as:

def func():
"A really important function!
return "int"

"

Wherever possible we try to use ordinary Python syntax to correspond to pybind11/C++ constructs: Python functions
correspond to and generate binding code for C++ functions as above; a Python class generates binding code for
pybindl11 to bind a C++ class; arguments for functions and methods in Python generate corresponding argument
specifications in C++ function pointer syntax. Because Python is not a strongly typed language, we specify C++ types
using strings (if needed) as above, where we specify the return int type by returning the string "int" from func.
We also use Python decorators to annotate Python methods with uniquely C++ concepts such as const, virtual,
etc., as will be discussed in succeeding sections.

https://github.com/jmikeowen/spheral

PYB11Generator Documentation, Release 1.0

1.1.1 Installation

PYB11Generator uses the Python Package Index PyPI to simplify installation of PYB11Generator, so installing
PYB11Generator is simply a matter of requesting it using pip:

$ pip install PYBllGenerator

This command installs PYB11Generator (and pybind11 since it is a dependency of PYB11Generator) as packages in
the Python you are using (i.e., the Python associated with the pip command).

For those curious, the source for PYB11Generator is hosted on github.

1.1.2 The basics: how to generate pybind11 code using PYB11Generator

PYBI11Generator works by starting up a Python process, importing a module containing Python defini-
tions for functions and classes corresponding to the C++ interface to be bound, and invoking the function
PYBllgenerateModule on the imported Python module, which writes out a C++ file of pybindl1 statements
binding that interface. This generated pybind11 C++ file is what is compiled by a C++ compiler to create the final
Python shared module allowing the C++ methods and classes to be exercised from Python. As an example, if we have
created a Python file mymodule . py containing the Python description of the C++ methods we wish to expose in a
module to be called mymodule, we can invoke PYBl1lgenerateModule to create the intermediate C++ file as:

python —-c 'from PYBllGenerator import =; import mymodule;
—PYBllgenerateModule (mymodule) '

resulting in the creation of a C++ source file mymodule.cc. A full description of the PYB11lgenerateModule
interface is given in PYBI 1 special functions and classes.

1.1.3 A first example start to finish

To explicitly demonstrate the stages of creating bindings using PYB11Generator, here we recreate an early example
in the pybind11 documentation: Creating bindings for a simple function. Say we want to wrap the following C++
method:

int add(int i, int j) {
return i + j;

}

We can use PYB11Generator to create the same pybind11 code used to wrap this method in the pybind11 tutorial by
writing a file simple_example.py containing:

"pybindll example plugin"

PYBllpreamble = """
int add(int i, int Jj) {
return i + j;

}

nun

def add():
"A function which adds two numbers"
return

Now executing the command:

4 Chapter 1. An important caveat about Python versions

https://pypi.org/
https://packaging.python.org/tutorials/installing-packages/
https://github.com/jmikeowen/pyb11generator
https://pybind11.readthedocs.io/en/stable/basics.html#simple-example

PYB11Generator Documentation, Release 1.0

$ python -c 'from PYBllGenerator import +; import simple_example;
—PYBllgenerateModule (simple_example, "example")'

creates a file example. cc, which looks like (omitting the boilerplate preamble code with #include’s):

int add(int i, int Jj) {
return i + J;

PYBIND11l_MODULE (example, m) {

m.doc() = "pybindll example plugin"

// Methods
m.def ("add", &add, "A function which adds two numbers");

This is identical to the native pybind11 binding code from the pybind11 tutorial Creating bindings for a simple func-
tion, modulo some comments. This code can now be compiled to the final Python shared module as described this
same pybindl11 tutorial:

$ c++ -03 -Wall -shared -std=c++11 —-fPIC “python -m pybindll --includes’ example.cc -
—0 example.so

A few things worth noting:

» This example uses the fact that if the function being wrapped is unambiguous, allowing us to use a bare C++
function pointer (without the full explicit function prescription). This is reflected in the PYB11Generator syntax
when we write the def add () function in python without arguments or a return type.

¢ In order to directly insert the C++ function definition into the resulting C++ file, we have used the special
variable PYB1l1lpreamble variable. A more typical use case will require # include-ing the necessary C++
header files in the generated code, which is accomplished through another special variable, PYB11lincludes,
described in PYBI1 reserved variables.

e In general special variables and commands to PYBI1Generator use the prefix PYB11l such as
PYBllpreamble in this example.

* Note also that ordinary Python doc strings (both for the module and function) are picked up from
simple_example.py and propagated to the pybindl1 bindings.

This example demonstrates the steps necessary to create a usable Python module using PYB11Generator:

1. Create a Python file describing the desired interface using ordinary Python syntax, based on the C++ methods
and classes to be bound.

2. Run a Python line like above to generate the pybind11 C++ code from this Python input.
3. Compile the resulting pybind11 C++ code to create the Python shared module.

In the following sections we describe the nuances of creating the PYB11 Python input files in much more detail; we
will not show the compilation examples beyond this point since it is no different than using pybind11 directly, and the
above example pretty much covers it.

1.1. Introduction to PYB11Generator 5

https://pybind11.readthedocs.io/en/stable/basics.html#simple-example
https://pybind11.readthedocs.io/en/stable/basics.html#simple-example

PYB11Generator Documentation, Release 1.0

1.2 Functions

We have already introduced a quick example of binding a function in A first example start to finish; this section will
go into more detail on how to generate pybind11 bindings for functions, including complications such as overloaded
methods and C++ templates.

1.2.1 Ordinary and overloaded functions

Suppose we have a header defining the following functions that we wish to bind for Python:

double unique_function(int a, double b);
double overloaded_function (int a, int b, int c);
double overloaded_function (double a, double b, double c);

We can use PYB11Generator to bind these functions with a file containing the following code:

from PYBllGenerator import = # Necessary to get decorators

def unique_function() :
"This is a unique function prescription, and so requires no details about,
—arguments or return types"

return
def overloaded_function(a = "int",
b = "int",
c = "int"):

"This is the version of overloaded_function that takes ints"
return "double"

@PYBllpycppname ("overloaded_function")

def overloaded_functionl(a = "double",
b = "double",
c = "double"):

"This is the version of overloaded_function that takes doubles"
return "double"

The first function unique_function is trivial, since it is unambiguous and can be wrapped with an unadorned C++
function pointer as shown in A first example start to finish. In this case PYB11Generator assumes the C++ function
name is the same as the Python function name, and all is simple.

The overloaded functions take a bit more work. The first challenge is that Python does not support the concept of func-
tion overloading: two Python functions cannot have the same name. Therefore we need to use unique Python names
for the C++ overloaded_function Python descriptions, which is why we define overloaded_function
and overloaded_functionl in the source for PYB11Generator. In order to tell PYB11Generator that we really
want to call overloaded_functionl overloaded_function in both the C++ and Python bindings, we use
our first PYB11 decorator: PYB11lpycppname. This decorator tells PYB11Generator that that function in question
is really called overloaded_function in C++, and we wish the Python name in the resulting binding code to
call this function overloaded_function in Python as well. This is actually two statements, and there are two
PYB11 decorators that can do these individual tasks independently if needed (PYB11cppname and PYB1l1lpyname):
PYBllpycppnamne is simply a convenient shorthand combination to cover the common case of wanting to simul-
taneously rename the bound method for C++ and Python. For a full listing of the PYB11 decorators see PYBI!
decorators.

Note we have also now specified the arguments and return types for both bindings of overloaded_function.
This is required since the C++ functions are overloaded, and in order for the C++ compiler to distinguish which
one we want it is necessary to fully specify the function signatures for the function pointers in the pybindll

6 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

binding code. PYBI11Generator always checks the return value for a wrapped function: if a return value is
present, it should be a string describing the C++ return type (as shown here, with both overloaded_function
and overloaded_functionl returning the string value "double"). If such a return value is specified,
PYB11Generator assumes a fully qualified C++ function pointer signature is required, and will also look for and
generate the argument types as well. The function arguments should be named what the argument name will be
in the resulting Python code, and set equal to a string with the C++ type of the argument as shown above for the
overloaded_function descriptions. Note, a C++ void return value or argument should be set to the string
"void" for PYB11Generator for such explicit specifications.

1.2.2 Default argument values

Another useful feature of pybindl1 is the ability to specify default values for arguments to functions/methods in
Python, and naturally PYB11Generator supports this feature as well. In order to specify a default value for an ar-
gument, we set the value of the argument in the Python binding code as a tuple, where the first element is a string
describing the C++ type, and the second a string with the C++ default value. As an example suppose we wish to bind
the following function that has two arguments (an int and a std: : string):

void howToDrawADragon (int numberOfBeefyArms, std::string label name);

and we want to use the default values 1 and "Trogdor" for these arguments. The PYB11Generator code would then
look like:

def howToDrawADragon (numberOfBeefyArms = ("int", "1"),
name = ("std::string", "Trogdor")):
return "void"

1.2.3 C++ template functions

C++ templates present another challenge, as this another concept not found in Python. Suppose we wish to expose
several instantiations of the following method:

template<typename ValueA, typename ValueB, typename ValueC>
ValueC
transmogrify (const ValueA& x, const ValueB& vy);

It is always possible to explicitly (and repetitively) define the function over and over again for each template instan-
tiation combination of (ValueA, ValueB, ValueC), but we would rather write the prescription once and have the
computer generate the necessary redundant code. PYB11Generator has such a facility: a template method can be
defined with the @PYB11template decorator, which takes the template arguments as a set of string arguments. The
function can then be instantiated as many times as needed using the function PYB11TemplateFunction. The
complete PYB11Generator binding code then might look like:

from PYBllGenerator import = # Necessary to get decorators and,
—PYBllTemplateFunction

@PYBlltemplate ("ValueA", "ValueB", "ValueC")

def transmogrify(x = "const &",
y = "const &)
"I'm sure this does something useful..."
return " "

transmogrifyIntIntDouble = PYBllTemplateFunction (transmogrify, ("int", "int", "double
—"), pyname="transmogrify")
transmogrifyI32I321I64 = PYBllTemplateFunction (transmogrify, ("uint32_t", "uint32_t

—", "uint64_t"), pyname="transmogrify") (continues on next page)

1.2. Functions 7

PYB11Generator Documentation, Release 1.0

(continued from previous page)

|

The first thing to note when defining a template function is that the template arguments can be used as Python string
dictionary substitution variables, as shown above in the definition of transmogrify. Since we have defined the
template parameters using the decorator @PYBlltemplate ("ValueA", "ValueB", "ValueC") wecan use
% (Valued)s, % (ValueB)s, or $(ValueC) s in the body of the function, as we do in this case defining the
arguments and return type.

Because we have decorated the transmogrify function with @PYBlltemplate, PYB11 will not generate
any pybindl1 code directly from this function. Instead we must define instantiations of such template functions
using the PYBI11 function PYB11TemplateFunction. In this example we have created two such instantia-
tions, and could continue making as many as we wish for different types. Note in this example we have made
these different instantiations overloaded in Python by forcing them all to have the name transmogrify via the
pyname="transmogrify" argument. This is not necessarily required: we must give each instantiation of the
template a unique name in Python (transmogrifyIntIntDouble and transmogrifyI32132164 in this
case), and if we are happy with those being the Python names of the wrapped results we need not specify pyname.
Such unique names in Python are safest, in that which instantiation the user wants to call down the line in the wrapped
library call is unambiguous, but often it is nicer to force the Python names to match the C++ as we do in this case.

For a full description of PYB11TemplateFunction see PYBl1lTemplateFunction ().

Note: In this example we have used the common case of C++ templates declared with typename (as in
template<typename T1l, typename T2>). However, for C++ templates can also use specialized parame-
ters, such as

template<int T1l, double T2> func(const double x);

In such cases we need need to specify these template parameters appropriately to PYB11Generator. This is done by
explictly declaring the types of the template parameters in PYBlltemplate:

@PYBlltemplate ("int T1", "double T2")

def func(x = "const double"):
"What does this function do?"
return

1.2.4 Explicitly defining the binding implementation for a function

In some instances it is useful to take direct control of or modify how a given function is exposed to Python.
PYB11Generator allows the user to directly specify what is passed in-place of the function pointer in such cases
via the @PYBllimplementation decorator. There are far too many possible use cases for this direct control to
possibly discuss, but as an example suppose we have a function like the following that uses an exotic container type
as an argument:

void ExoticContainer permutate (const ExoticContainers& c);

If pybind11 knows nothing about the ExoticContainer class, and we would rather expose this to Python using
ordinary Python lists, we could use the following pattern to wrap a list based interface around permutate:

@PYBllimplementation (""" [] (py::1list c) —-> py::list {

ExoticContainer ccopy;

for (const auto& x: c) ccopy.
—push_back (x) ;

(continues on next page)

8 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

(continued from previous page)

permutate (ccopy) ;
py::list result;
for (const auto& x: ccopy),.
—result.append(x);
return result;
pre)
def permutate(c = "py::list"):
return "py::list"

The resulting pybind11 code is:

m.def ("permutate", [](py::list c) -> py::list {

ExoticContainer ccopy;

for (const auto& x: c) ccopy.push_
—back (x);

permutate (ccopy) ;

py::list result;

for (const auto& x: ccopy) result.
—append (x) ;

return result;1

}, "c"_a);

so as you can see @PYB1limplementation allows the author to directly control the code inserted in the usual spot
for a function pointer. Note that the argument spec is still generated ("c"_a in this example), including any default
arguments defined as described above in Default argument values.

1.2.5 Preventing automatic casting of arguments

In C++ automatic casting of arguments which are implicitly convertible to a different type (such as calling a function
that accepts a double argument with an int) is usually allowed. In pybind11 it is possible to prevent this behavior
using the .noconvert () option to a Python argument, such as py: :arg () .noconvert (). PYB11Generator
supports the idea of noconvert as well, though in a less granular fashion currently as it is used to decorate an entire
function signature rather than individual arguments. For instance, if we wanted to bind the following method and
ensure automatic conversions of the argument are prevented:

double munge_my_double (double x);

we can accomplish this using the @PYB11lnoconvert decorator:

@PYBllnoconvert
def munge_my_double(x = "double"):
return "double"

See the pybind11 discussion for more information.

1.3 Classes

Binding classes in PYB11Generator is based on writing the desired interface as a Python class, similar to the process
for Functions. As a first example consider the example struct used as the first such example in the pybind11 class
documentation Object-oriented code:

1.3. Classes 9

https://pybind11.readthedocs.io/en/stable/advanced/functions.html?highlight=noconvert#non-converting-arguments
https://pybind11.readthedocs.io/en/stable/classes.html#classes

PYB11Generator Documentation, Release 1.0

struct Pet {
Pet (const std::string &name) : name (name) { }
void setName (const std::string &name_) { name = name_; }
const std::string &getName () const { return name; }

std::string name;
bi

This struct can be wrapped in straightforward fashion in PYB11Generator as:

class Pet:

def pyinit (self,
name = "const std::string&"):
return

def setName (self,
name = "const std::string&"):
return "void"

def getName (self):
return "const std::string"

Processing this Python class definition through PYB11Generator results in the following (omitting generic preamble
code):

// Class Pet

{
py::class_<Pet> obj(m, "Pet");

// Constructors
obj.def (py::init<const std::string&> (), "name"_a);

// Methods
obj.def ("setName", (void (Pet::«x) (const std::stringé&)) &Pet::setName, "name"_a);
obj.def ("getName", (const std::string (Pet::«x) ()) &Pet::getName);

which is very similar to the native pybind11 code presented in Object-oriented code. This example demonstrates a few
important aspects of generating class bindings with PYB11Generator:

* A python class results in the generation of a pybind11 class_ <> declaration.

* Binding class methods with PYB11Generator is directly analogous to binding free functions: we write the
method signature in python syntax, with the arguments set equal to the C++ type as a string.

— If the C++ class method is unambiguous (not overloaded), then just as with functions we can specify the
method in python with no arguments and an empty return value.

— If a default value for an argument is desirable, simply set the argument equal to a tuple of two strings: arg
= ("C++ type", "C++ default value"), identically to the treatment of functions in Default
argumem values.

* Constructors are specified by any class method starting with the string pyinit.

10 Chapter 1. An important caveat about Python versions

https://pybind11.readthedocs.io/en/stable/classes.html#classes

PYB11Generator Documentation, Release 1.0

1.3.1 Constructors

In general PYB11Generator interprets methods of classes as ordinary methods to exposed via pybind11 — the one
exception to this rule is class constructors. Any method that begins with the name pyinit is interpreted as a class
constructor, allowing the specification of an arbitrary number of constructors. For instance, if we have a C++ class
with the following constructors:

class A {

public:

A(); // Default constructor

A (const std::string name); // Build with a name, default,,
—priority

A(const std::string name, const int priority); // Build with a name and priority

}i

We can bind these three different constructors using the following Python specification:

class A:
"A class that does something with a string and an int..."

def pyinit (self):
"Default constructor"

def pyinitl(self, name="const std::string"):
"Build with a name, default priority"

def pyinit2(self, name="const std::string", priority="const int"):
"Build with a name and priority"

For constructors it does not matter what names are used past the pyinit string: any such name will be interpreted
as a constructor. All that is required is that any class pyinit name be unique — remember, python does not allow
overloading, so defining successive methods with the same name simply causes the earlier method definitions to be
lost. Not that the author has made such mistakes in creating my own binding code. . .

1.3.2 Inheritance

Class inheritance hierarchies in C++ are simple to reflect in PYB11Generator, as this is an OO concept shared by both
C++ and Python: all that is required is to reflect the inheritance hierarchy in the Python PYB11 code. In order to
expose the following C++ classes:

class A {

public:
A(); // Default constructor
int func(int x); // Some useful function of A

}i

class B: public A {
public:
B(); // Default constructor
double dfunc (double x); // Some useful function of B
}i

we can simply reflect this object hiearchy in the PYB11Generator code:

class A:

(continues on next page)

1.3. Classes 11

PYB11Generator Documentation, Release 1.0

(continued from previous page)

def pyinit (self):
"Default constructor"

def func(self, x="int"):
"Some useful function of A"
return "int"

class B(A) :

def pyinit (self):
"Default constructor"

def dfunc(self, x="double"):
"Some useful function of B"
return "double"

Note: Cross module inheritance (binding a class in one module that inherits from a class bound in another) is a
slightly trickier case. See the discussion in Cross-module inheritance for an example of how to do this.

Note: Another esoteric case is having a non-templated class inherit from a templated one. A method of handling this
situation is discussed in Non-templated class inheriting from a templated class.

1.3.3 Methods

Class methods are wrapped much like free functions using PYB11Generator: we simply define a python class method
with the desired name. If the method is unambiguous (not overloaded), we do not necessarily have to specify the return
types and arguments (though full specifications are always allowed, and at times preferable to generate more explicit
help in Python). The syntax for specifying C++ return types and arguments for methods is identical to that used for
for Functions, as is evident in the examples below.

Overloaded methods

Just as with Ordinary and overloaded functions, overloaded methods require full call specifications, as well as unique
names in python. We use the PYB11 decorators @PYB11lpyname, @PYB1lcppname, or @PYB1llpycppname to
link the proper C++/Python names as needed. As an example, consider the following C++ class:

class A {

public:

int process(const int x); // Process the internal state somehow,
—to answer this query

std::string label(); // Return a string label

std::string label (const std::string suffix); // Return a string label including a_
—specified suffix

}

In this case we have one unambiguous method (process), and two overloaded methods (Label). We can write
PYB11Generator bindings for these methods as:

12 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

class A:

def process(self):
"Process the internal state somehow to answer this query"
return

def label (self):
"Return a string label"
return "std::string"

@PYBllpycppname ("label")

def labell (self, suffix="const std::string"):
"Return a string label including a specified suffix"
return "std::string"

We have chosen to bind the unambiguous A: : process method using no method signature (i.e., no return type or
arguments) for brevity. The overloaded A: : 1abel methods however require the complete method prescriptions be
specified in order for the compiler to know which C++ A: : 1label we are referring to. Because Python does not
allow class methods with the same name however, we must use unique method names in our Python class binding
(hence A.label and A.labell). We use the PYB11 decorator @PYB1lpycppname on A.labell to indicate
we want the bound Python and C++ names to be 1abel. This is identical to how this overloading problem is handled
for Ordinary and overloaded functions.

Note: In this example we have made the typical choice to overload the 1abel method in Python just as in C++.
We could, however, decide to leave the Python label and labell methods with unique names, removing the
unpythonic overloading concept from the python interface. If we want to leave the Python name of the second binding
of A::1abel as A.labell, we still need to tell PYB11Generator that the C++ name is A: : label rather than
A::labell. In this case we would simply change the decorator to specify the C++ name alone:

@PYBllcppname ("label")

def labell (self, suffix="const std::string"):
"Return a string label including a specified suffix"
return "std::string"

Const methods

Const’ness is a concept in C++ not shared by Python, so we use a decorator (@PYB1llconst) to denote a const
method when needed. For instance, the following C++ class definition:

class A {
public:
int square (const int x) const { return xxx; } // Return the square of the argument

i

can be specified in PYB11 using:

class A:

@PYBllconst

def square(self, x="const int"):
"Return the square of the argument"
return "int"

1.3. Classes 13

PYB11Generator Documentation, Release 1.0

Virtual methods

If we simply wish to expose C++ virtual methods as ordinary class methods in Python (i.e., not allowing overriding
the implementation of such methods from Python), then nothing extra need be done in the method binding for PYB11.
However, in pybind11 it is also possible to expose C++ virtual methods such that they can be overridden from Python
descendants, which is a very powerful capability. Exposing such overridable virtual methods in pybindl1 involves
writing an intermediate “trampoline” class as described in the pybind11 documentation Overriding virtual functions
in Python. PYB11Generator automates the generation of such intermediate redundant code (this was in fact the
motivating factor in the creation of PYB11Generator), removing much of the bookkeeping necessary to maintain such
coding in face of a changing interface. In PYB11Generator all that is required for making a virtual method overridable
from Python is decorating such virtual methods with @PYBl11lvirtual/@PYBllpure_virtual as appropriate.
Consider binding the C++ example from the pybind11 documentation Overriding virtual functions in Python:

class Animal {

public:
virtual ~Animal() { }
virtual std::string go(int n_times) = O;

}i

class Dog : public Animal {
public:
virtual std::string go(int n_times) override ({
std::string result;
for (int i=0; i<n_times; ++1)
result += "woof! ";
return result;

}i

All that is necessary to bind this code using PYB11Generator is the following:

class Animal:

def pyinit (self):
"Default constructor"

@PYBllpure_virtual
def go(self, n_times="int"):
return "std::string"

class Dog(Animal) :

def pyinit (self):
"Default constructor"

@PYBllvirtual
def go(self, n_times="int"):
return "std::string"

Now both Animal and Dog are accessible from Python, and PYB11Generator automatically generates the necessary
trampoline classes such that the go method can be overridden by descendant Python classes as desired. Note the use
of the PYB11 decorators: PYBl11lvirtual and PYBllpure_virtual. The use of these two should evident from
their names and uses in this example:

e PYBllvirtual decorates C++ methods that are virtual (such as Dog: : go).

* PYBllpure_virtual decorates C++ methods are pure virtual (such as Animal: :go), marking such
classes as abstract.

14 Chapter 1. An important caveat about Python versions

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals

PYB11Generator Documentation, Release 1.0

Protected methods

It is possible to bind protected class methods in pybind11 as described in the pybind11 documentation. In the pybind11
code this requires writing an intermediate C++ class to publish the protected methods. PYB11Generator automates the
production of such publisher classes as needed, however, so all that is required to expose a protected class method is
to decorate the PYB11 binding with @PYBllprotected. In order to expose the protected method of the following
example:

class A {
protected:

void some_protected_method(const int x); // A protected method to apply x—>A_,
—somehow

}

we simply provide a decorated PYB11 binding as:

class A:

@PYBllprotected

def some_protected_method(self, x="int"):
"A protected method to apply x—>A somehow"
return "void"

Static methods

Static C++ methods are denoted to PYB11Generator using the @PYB11static decorator as in the following exam-
ple.

C++ class with a static method:

class A {
public:

static int func(int x); // This method does something with x
}i

PYB11 binding code:

class A:

@PYBllstatic

def func(x = "int"):
"This method does something with x"
return "int"

1.3.4 Special class operators and methods

Python has a number of special methods for classes, such as __len_ , _ add__, etc., which allow the object
behavior to be controlled for operations such as +, +=, 1len (), and so forth. pybind11 supports these operators, so
naturally PYB11Generator does as well. In keeping with PYB11Generators interface, these are specified by providing
these special method names in your Python class description.

1.3. Classes 15

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#binding-protected-member-functions
https://docs.python.org/2/reference/datamodel.html#special-method-names
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading

PYB11Generator Documentation, Release 1.0

Numeric operators

The numeric operators supported by PYB11Generator are __add__, sub__ ,_ mul__ , div__ ,_ mod__,
__and__, Xor_ , __or_ ,__radd_ , __rsub_ , __rmul_ , _ rdiv_ , _ rmod__, _ rand_ ,
_rxor__,_ ror__, dadd__, disub__, dimul__, idiv__,__imod__ ,_ iand__ ,__ixor__,
__dior__,__neg__,and __invert__ . Python descriptions of these methods are available here.

In the common case for binary operators where the argument is of the same type as the class we’re binding, we can
omit the the argument specification and return type. However, in the case where the binary operator accepts a different
C++ type, we need to specify this argument type in the usual PYB11 syntax for arguments and return types.

It is also important to remember that Python does not allow us to define a method name more than once in a class,
so if we have overloaded C++ math operators (say operator+ can accept more than one type), we must give each
binding a unique name, but then use decorators such as @PYB11pyname to force the special operator name for the
method.

As an example, consider the following C++ class which supports addition with itself or a double, multiplication by
a double, and the unary negative operator:

class Vector3d {
public:
Vector3d operator-() const;

Vector3ds& operator+=(const Vector3d& rhs);
Vector3d operator+ (const Vector3d& rhs) const;

Vector3ds operator+=(const double rhs);
Vector3d operator+ (const double rhs) const;

Vector3ds& operator*=(const double rhs);
Vector3d operator* (const double rhs) const;

}i

We can bind these numeric operations for the Python version of Vector3d with PYB11Generator using normal
Python operator syntax:

class Vector3d:

def neg__ (self):

return

def _ iadd__ (self):
return

def _ add__ (self):

return

@PYBllpyname ("__iadd__")

def _ iadd_ double(self, rhs="const double"):
return

@PYBllpyname ("__add__ ")

def _ add_ double(self, rhs="const double"):
return

def _ imul_ (self, rhs="const double"):

return "Vector3d&"

(continues on next page)

16 Chapter 1. An important caveat about Python versions

https://docs.python.org/2/reference/datamodel.html#emulating-numeric-types

PYB11Generator Documentation, Release 1.0

(continued from previous page)

def _ mul__ (self, rhs="const double"):
return "Vector3d"

Comparison operators

le,_eq_,_ne_ ,__gt__,and__ge__. Usage of
these methods (naturally all binary operators in this case) follow the same pattern as the numeric binary operators.
As an example, suppose our Vector3d class in the previous example also defined comparisons with with either
Vector3dor double:

The comparison operators supported are __1t__, __le

class Vector3d ({

public:
bool operator==(const Vector3ds& rhs) const;
bool operator!=(const Vector3d& rhs) const;
bool operator< (const Vector3dé& rhs) const;

bool operator==(const double rhs) const;

bool operator!=(const double rhs) const;

bool operator< (const double rhs) const;
}i

We can expose these operations to Python similarly to the binary math operators:

class Vector3d:

def _ _eqg (self):
return

def = ne_ (self):
return

def _ 1t_ (self):
return

@PYBllpyname ("__eq ")
def _ _eqg double(self, rhs="const double"):
return "bool"

@PYBllpyname ("__ne_ ")
def _ ne_ double(self, rhs="const double"):
return "bool"

@PYBllpyname ("__1t_ ")
def _ 1t_ double(self, rhs="const double"):
return "bool"

Functor (call) operator

A special class operator in Python is the __call__ operator (corresponding to the C++ operator () method),
which allows a class to operate like a function. If we have a C++ functor class, we can expose this functor behavior by
binding the C++ operator () callas__call__ . As an example, suppose we have C++ functor like the following:

1.3. Classes 17

https://docs.python.org/2/reference/datamodel.html#object.__lt__

PYB11Generator Documentation, Release 1.0

class Transmute {
public:

double operator () (const double x);
bi

we can expose this functor nature of Transmute via this sort of PYB11 binding:

class Transmute:

def _ call_ (self, x="const double"):
return "double"

PYB11Generator automatically associates __call___ with the C++ method operator (), unless overridden with
something like @PYBllimplementation.

Miscellaneous operators

Another pair other useful operators supported are __repr___and __str__. These are used to create string rep-
resentations of objects for slightly different purposes, as explained in the official Python documentation — essentially
__repr__ should return a string representation of the object such that it could be reconstructed, vs. ___str___ which
should produce a human friendly string.

Any function or method that produces such strings is fine to bind to these names (often via renaming
such as @PYBllpyname ("__str__")), but a very common pattern is to use lambda functions with the
PYBllimplementation () decorator to implement these methods directly in the binding code. As one exam-
ple, we might bind useful versions of these operators for the example C++ class Vector3d above as:

class Vector3d:

@PYBllimplementation (" [] (const Vector3d& self) -> std::string { return "[" + self.
ox + ", " + self.y + ", " + self.z + "]" }")
def _ repr__ (self):
return "std::string"

@PYBllimplementation (" [] (const Vector3ds& self) -> std::string { return "Vector3d(
(_)H + Self.X + n n + Self.y + n n + Self.Z + ")" }")
def _ str_ (self):
return "std::string"

Sequence methods

Probably the first thing to point out here is this section is not necessary for handling STL containers: pybindl1 has
built-in support for Binding STL containers, which PYB11Generator provides convenient wrappers for. In fact, so
long as implicit copying of STL containers through the Python-C++ interface is acceptable, nothing need be done with
STL containers at all — they will automatically be handled by pybind11 transparently.

Binding the Python sequence methods for your own C++ types can at times be a complicated process, and there
is not necessarily a single solution that fits all cases. There are several methods in Python you can override to
provide sequence information: __len_, getitem_ , setitem , getslice_ , setslice_,
__iter__ , etc. PYBl11Generator allows all these methods to be used via pybindl11, but it definitely behooves the
interested user to thoroughly understand the pybind11 and Python documentation on this subject. It will often require
writing some lightweight interstitial code to translate C++ container information to Python and back, for which lambda
functions and the PYB11implementation () decorator are handy.

18 Chapter 1. An important caveat about Python versions

https://docs.python.org/2/reference/datamodel.html#object.__repr__
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://docs.python.org/2/reference/datamodel.html#emulating-container-types
https://pybind11.readthedocs.io/en/stable/advanced/misc.html#binding-sequence-data-types-iterators-the-slicing-protocol-etc
https://docs.python.org/2/reference/datamodel.html#emulating-container-types

PYB11Generator Documentation, Release 1.0

As the bare beginning of an example, here is a version of one of the pybind11 test C++ sequence classes (stripped to
just the interface) drawn from the pybindl1l/tests/test_sequences_and_iterators.cpp test code:

class Sequence {
public:
Sequence (size_t size);
Sequence (const std::vector<float> &value);
Sequence (const Sequence &s);

bool operator==(const Sequence &s) const;
bool operator!=(const Sequence &s) const;

float operator[] (size_t index) const;
float &operator|] (size_t index);

bool contains (float v) const;
Sequence reversed() const;
size_t size() const;

const float xbegin() const;

const float *end() const;
}i

and here is an example binding for these methods translated from the pybind11 test code in pybindll/tests/
test_sequences_and_iterators.cpp to PYB1l1Generator Python syntax

class Sequence:

def pyinitO (self, size="size_t"):
return

def pyinitl(self, value="const std::vector<float>&"):
return

def pyinit2(self, s="const Sequence&"):
return

def _ _eq (self):
return
def ne__ (self):

return

Sequence methods
@PYBllcppname ("size")
def len_ (self):

return "size t"

@PYBllimplementation (" [] (const Sequence &s, size_t 1) { if (1 >= s.size()) throw,
—py::index_error(); return s[i]; ")
def _ _getitem_ (self, i="size_t"):
return "float"

@PYBllimplementation (" [] (Sequence &s, size_t i, float v) { 1if (i >= s.size()),_
—throw py::index_error(); s[i] = v; ™)
def _ setitem_ (self, i="size_t", v="float"):

return "void"

Optional sequence methods

(continues on next page)

1.3. Classes 19

PYB11Generator Documentation, Release 1.0

(continued from previous page)

@PYBllkeepalive (0, 1) # Essential: keep object alive while iterator exists
@PYBllimplementation (" [] (const Sequence &s) { return py::make_iterator(s.begin(),
—s.end()); ™)

def _ iter (self):
return "py::iterator"

@PYBllcppname ("contains")

@PYBllconst

def _ contains__ (self, v="float"):
return "bool"

@PYBllcppname ("reversed")

@PYBllconst

def _ reversed_ (self):
return "Sequence"

Slicing protocol

@PYBllpyname ("__getitem_ ")

@PYBllimplementation (""" [] (const Sequence &s, py::slice slice) -> Sequencex {
size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &

—slicelength)) throw py::error_already_set ();
Sequence *seq = new Sequence (slicelength);
for (size_t i = 0; 1 < slicelength; ++i) {
(#seq) [1] = s[start]; start += step;
}
return seq;
P
def _ getitem_ _slice(self, slice="py::slice"):
return "Sequencex"

@PYBllpyname ("__setitem_ ")
@PYBllimplementation (""" [] (Sequence &s, py::slice slice, const Sequence &value) {
size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &
—slicelength))
throw py::error_already_set();
if (slicelength != value.size())
throw std::runtime_error ("Left and right hand size of
—slice assignment have different sizes!");
for (size_t i = 0; i < slicelength; ++1i) {
s[start] = value[i]; start += step;
prnn
pre)
def __getitem__slice(self, slice="py::slice", value="const Sequenceg&"):

return "void"

This rather in-depth example uses a few concepts not introduced yet (such as @PYB11lkeepalive) which are dis-
cussed later, but hopefully gives a flavor of what is needed. Mapping types are also supported through the same sort
of overriding of built-in Python methods analogous to above.

1.3.5 Templated methods

Templated methods are handled in a very similar manner to C++ femplate functions. Suppose we want to bind the
templated method in the following C++ class:

20 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

class A {
public:

template<typename ValueA, typename ValueB, typename ValueC>

ValueC
transmogrify (const ValueA& x, const ValueBs& vy);

}i

In order to bind this method we first create a python class method and decorate it with @PYBlltemplate
and the template types as strings. We then create however many instantiations of this method as we like using
PYBIllTemplateMethod():

class A:

@PYBlltemplate ("ValueA", "ValueB", "ValueC")
def transmogrify(self, x=" ", y=" ")
"I'm sure this does something useful..."

return "

transmogrifyIntIntDouble = PYBllTemplateMethod (transmogrify, ("int", "int",
—"double"), pyname="transmogrify")

transmogrifyI32I32I64 = PYBllTemplateMethod (transmogrify, ("uint32_t", "uint32_
—t", "uint64_t"), pyname="transmogrify")

Comparing this with the example in C++ template functions, we see that handling template class methods is
nearly identical to template functions. The only real difference is we instantiate the template class method using
PYBllTemplateMethod (assigned to class attributes) instead of PYB11TemplateFunction.

1.3.6 Attributes

C++ structs and classes can have attributes, such as:

struct A {
double x; // An ordinary attribute
const double y; // A readonly attribute
static double xstatic; // A static attribute

}i

Attributes in pybind11 are discussed in Instance and static fields; PYB11Generator exposes these kinds of attributes
via the special PYBI11 types PYBlreadwrite and PYBllreadonly. We can expose the attributes of A in this
case via PYB11Generator using:

class A:
x = PYBllreadwrite (doc="An ordinary attribute")
y = PYBllreadonly (doc="A readonly attribute")
xstatic = PYBllreadwrite (static=True, doc="A static attribute")

In this example we have used the optional arguments doc to add document strings to our attributes, and static
to indicate a static attribute — for the full set of options to these functions see PYBlIlreadwrite () and
PYBllreadonly /().

1.3. Classes 21

https://pybind11.readthedocs.io/en/stable/classes.html#properties

PYB11Generator Documentation, Release 1.0

1.3.7 Properties

A related concept to attributes is class properties, where we use getter and setter methods for data of classes as though
they were attributes. Consider the following C++ class definition:

class A {

public:
double getx () const; // Getter for a double named "x"
void setx (double val); // Setter for a double named "x"

}i

There are at least two ways we can go about creating A . x as a property.

Option 1: use PYBllproperty

The most convenient method (or at least most succinct) to treat A . x as a property is via the PYBllproperty helper
type. In this example we could simply write:

class A:
x = PYBllproperty (getter="getx", settter="setx",
doc="Some helpful description of x for this class")

This minimal example demonstrates that using PYBl1lproperty we can expose properties in a single line like this
— see full description of PYB1Iproperty ().

Option 2: use an ordinary python property definition

Python has native support for properties via the built-in property () ; PYB11Generator is able to interpret use of
this function to define pybind11 properties as well. We can use this method to create A . x as follows:

class A:

def getx(self):
return

def setx(self):
return

X = property(getx, setx, doc="Some helpful description of x for this class")

This method has the advantage we are using all ordinary python constructs, which PYB11Generator is able to parse
and create the property as desired.

Note: In this second example we have also exposed the getx and setx methods to be bound in pybind11. If
this is not desired, we can decorate these methods with @PYR11lignore, allowing these methods to be used in the
property () definition while preventing them from being directly exposed themselves.

1.3.8 Dynamic attributes

By default pybind11 classes are immutable from Python, so it is an error to try and insert new attributes to an instance
of a pybind11 bound C++ class. This is different than default behavior in Python however, which allows instances of
classes to be modified with new attributes. For example, the following is legal Python code:

22 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

>>> class Strongbadia:
headOfState = "Strong Bad"

>>> country = Strongbadia ()
>>> country.population = "Tire" # Valid, we just dynamically added a new attribute

pybind11 allows us to specify if we want classes to be modifiable in this way (see pybindl1 docs), which is reflected
in PYB11Generator by using the decorator @PYB1lldynamic_attr. So if we wanted to modify one of our class
bindings for A above to allow dynamic attributes, we can simply decorate the class declaration like:

@PYBlldynamic_attr
class A:

1.3.9 Singletons

Suppose we have declared a C++ class to be a singleton object (i.e., declared all constructors and destructors private)
like so:

class Asingleton {

public:

static Ax instance() { return instanceptr; }
private:

static A*x instanceptr;

A();

A (const A&);
A& operator=(const A&);
~A();

}i

pybind11 (viaits use of std: :unique_ptr to hold Python instances) assumes bound objects are destructible, but
for singletons such as Asingleton above the destructor is private. We must notify pybind11 that singletons such as
this are different (as discussed in pybind11 for Non-public destructors) — PYB11Generator accomplishes this via the
decorator @PYB11singleton like so:

@PYBllsingleton
class Asingleton:

@PYBllstatic
@PYBllreturnpolicy ("reference")
def instance(self):

return "Asingletonx"

This example also involves setting a policy for handling the memory of the Asingleton« returned by A.
instance: these sorts of memory management details are discussed in Return value policies.

1.3.10 Templated classes

PYB11 handles C++ class templates similarly to C++ template functions: first, we decorate a class definition with
@PYBlltemplate, which takes an arbitrary number of string arguments representing the template parameters; sec-
ond, we use the PYBI11TemplateClass () function to create instantiations of the template class. Consider a C++
template class definition:

1.3. Classes 23

https://pybind11.readthedocs.io/en/stable/classes.html#dynamic-attributes
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#classes-with-non-public-destructors

PYB11Generator Documentation, Release 1.0

template<typename Scalar>
class Vector {
public:
Scalar x, y, z; // Coordinate attributes

Vector (Scalar x, Scalar y, Scalar z); // Constructor
Scalar magnitude () const; // Compute the magnitude (norm)
}i

We can create PYB11Generator instantiations of this class for double and float types using:

@PYBlltemplate ("Scalar")
class Vector:
"A simple three-dimensional Vector type using coordinates"

x = PYBllreadwrite ()
y = PYBllreadwrite ()
z = PYBllreadwrite ()

def pyinit (self, x=" ",oy=" ", z=" ")
"Construct with specified coordinates"

@PYBllconst

def magnitude (self):
"Compute the magnitude (norm)"
return " "

FloatVector = PYBllTemplateClass (Vector, template_parameters="float")
DoubleVector = PYBllTemplateClass (Vector, template_parameters="double™)

Just as is the case with template functions, classes decorated with @PYRlltemplate are implicitly ignored by
PYB11Generator until an instantiation is created with PYB11TemplateClass (). Additionally, template parame-
ters specified in @PYB1l1ltemplate become named patterns which can be substituted with the types used to instan-
tiate the templates. So, in the Vector example above, $ (Scalar) s becomes float in the first instantiation and
double in the second. See PYBIltemplate () and PYBI11TemplateClass () for further details.

Complications can arise with inheritance of templated classes, particularly if the template parameters change between
the base and descendant types. See the discussion in Non-templated class inheriting from a templated class and
Templated class inheritance with template parameter changes for further details.

1.4 Enums

C++ enums are handled in a fairly straightforward manner as discussed in the pybind11 docs. Suppose we have the
following enum in C++:

// A collection of adorable rodents
enum Rodents {

mouse = 0,
rat = 1,
squirrel = 2,
hamster = 3,

gerbil = 4,
capybara = 5
i

24 Chapter 1. An important caveat about Python versions

https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types

PYB11Generator Documentation, Release 1.0

PYBI11 uses the special method PYB1lenum to declare enums, directly corresponding to the pybindl1 construct
py: :enum_. We can bind our enumeration of Rodents using:

Rodents = PYBllenum(("mouse", "rat", "squirrel", "hamster", "gerbil", "capybara"),
doc="A collection of adorable rodents")

See PYB1lenum () for the full set of options to PYB11lenum.

It is also straightforward to declare an enum type that is inside a class scope; if we have a C++ class with an enum like
the following:

class Homestararmy {
public:

enum members {
HomestarRunner = 0,
StrongSad = 1,
Homsar = 2,
PaintingOfGuyWithBigKnife = 3,
FrankBennedetto = 4,

}i

}i

We can bind this enum using PYB11Generator with:

class Homestararmy:

members = PYBllenum(("HomestarRunner", "StrongSad", "Homsar",
—"PaintingOfGuyWithBigKnife", "FrankBennedetto"))

1.5 Memory management

Generally memory management “just works” when binding C++ and Python with pybind11 without worrying about
how the memory/lifetime of the objects is handled. However, since C++ allows memory and objects to be allo-
cated/deallocated in a variety of ways, at times it is necessary to pay attention to this issue. In this section we discuss
the pybind11 methods of handling memory and object lifetimes PYB11Generator provides wrappers for. In order to
understand this section it is advisable to read the pybindl1 documentation on the use of smart pointers, pybind11
Return value policies, and Additional call policies.

1.5.1 Class holder types

When pybindl1 creates a new instance of a bound C++ class, it uses a smart pointer type to hold and manage that
instance. The default type used by pybind11 for this purpose is std: :unique_ptr, which means new objects cre-
ated in this manner by Python will be deallocated when their reference count goes to zero. In most circumstances this
is fine, but some C++ applications may have a smart pointer type they already are working with. In such cases it might
be preferable to make pybind11 manage these object using the same sort of smart pointer. In PYB11 we specify this
by decorating class declarations with @PYB11holder. For instance, to make pybindl1 use std: :shared_ptr
to hold a class type A:

@PYBllholder ("std: :shared_ptr")
class A:

def pyinit (self):
"Default constructor"

1.5. Memory management 25

https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#smart-pointers
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies

PYB11Generator Documentation, Release 1.0

This tells pybind11 any new instance of A created from python should be managed by std: :shared_ptr. py-
bind11 supports std: :unique_ptr and std: : shared_ptr without further work. It is possible to use any ref-
erence counting smart pointer for this purpose, but types other than std: :unique_ptr and std: : shared_ptr
require more information be specified to pybind11. PYB11 does not provide any convenience methods for adding that
additional information, but it can be done directly with pybind11 as described in the pybind11 documentation.

Note: Overriding the holder smart pointer type can result in subtleties that lead to hard to understand memory errors.
If using this capability, read the pybind11 description carefully!

1.5.2 Return value policies

Return value policies are important but at times tricky for C++ types returned by reference or pointer. By default
pybind11 assumes Python will take ownership of returned values, implying Python can delete those objects when
the Python reference count falls to zero. If a C++ library returns a pointer to memory it expects to manage, how-
ever, the result of this conflict over who can manage (delete) that memory is an error. For this reason pybind11
provides Return value policies, allowing the developer to explicitly state how memory returned from C++ should
be handled. Before using these policies it is critical to read and understand these policies from pybindl1. These
return value policies are applied (for functions or methods) using the @PYBllreturnpolicy decorator, with
allowed values take_ownership, copy, move, reference, reference_internal, automatic, and
automatic_reference. The default policy is automatic.

Consider the example C++ function from the pybind11 documentation:

/# Function declaration #*/
Data *get_data() { return _data; /+ (pointer to a static data structure) =/ }

If we want to tell pybind11 the C++ side will manage the memory for the returned Datax from this method, the
reference return policy is appropriate. We can express this by decorating the function binding as:

@PYBllreturnpolicy ("reference")
def get_datal():
return "Datax"

Decorating return values from class methods is identical to functions: simply use @PYBllreturnpolicy to deco-
rate the method declaration.

1.5.3 Call policies

While Return value policies are specific to return types from functions or methods, call policies allow the user to tie
together the lifetimes of return values and/or arguments. This is discussed in depth in the pybind11 documentation Ad-
ditional call policies. PYB11 provides the decorator @PYBllkeepalive (a, b) for direct access to the pybind11
command py: :keep_alive<a, b>. The arguments to the decorator a and b are integers indicating arguments in
the call signature by position index, with the convention:

¢ (0 denotes the return value of the function/method.
* If decorating a class method, index 1 is the this (or self) pointer.

To recreate the example from the pybind11 documentation, if we have a custom List class which we are binding in
Python, we might want to decorate the append method like:

class List:

(continues on next page)

26 Chapter 1. An important caveat about Python versions

https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#std-shared-ptr
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies

PYB11Generator Documentation, Release 1.0

(continued from previous page)

@PYBllkeepalive(l, 2)
def append(self, x):
return "void"

This tells pybind11 to keep the the second argument (x, the element being appended) alive so long as the first argument
(self, our container class) is alive.

1.5.4 Call guards

Another variation on wrapping functions/methods is to provide call_guard as discussed in the pybind11 call_guard
documentation. Call guards must be default constructable C++ types, and will be built in scope just before calling the
wrapped method. One typical usage would be to release the Python Global Interpreter Lock (GIL) before calling a
wrapped method, so something like:

@PYBllcall guard("py::gil_scoped_release")

def my_wrapped_method() :
"Some C++ method that needs to have the GIL released."
return

1.6 STL containers

In many cases STL containers (such as vector, deque, map, etc.) can be used transparently with pybind11: python
lists will automatically convert to std: : vector and vice versa for example with no extra work or notation needed.
The main caveat to this convenience, however, is that this is accomplished by copying the data in the container,
which has two potential drawbacks: for large containers this may not be practical; second, any attempt to change
data on either the C++ or Python side will be lost due to the fact you would be operating on a copy. Even if your
function/method specification is passing STL containers by reference, this silent copying will make modifying them
across the Python/C++ interface impossible without further work.

If you need to pass an STL container without all this magic copying, it becomes necessary to directly bind such
containers and define the behavior you want. PYB11Generator provides some interfaces to pybind11’s machinery for
such bindings, but it is essential to first read and understand what pybind11 is doing for STL types.

PYB11Generator currently only provides Python convenience methods for handling two STL containers:
std::vectorvia PYB11_bind vector(),and std: :map with PYB11_bind map (). Itis possible to use
the pybind11 semantics directly in C++ in combination with PYB11Generator to handle cases beyond std: : vector
and std: :map of course, it simply involves using the pybind11 C++ interface directly.

1.6.1 std::vector

Suppose we want to bind std: :vector<int> and std: :vector<Aclass> in our module such that they will
be modifiable through the interface (no copying). We can accomplish this by adding two lines to our Python module
definition:

vector_of_int = PYB1l1l_bind_vector ("int", opaque=True)
vector_of_Aclass = PYBll_bind_vector ("Aclass", opaque=True)

When we import the resulting compiled module it will now include the types vector_of_int and
vector_of_Aclass explicitly, and we need to deal in those types rather than the more convenient Python lists
for arguments of those types. The opaque argument here is what makes pybind11 treat these vector’s as mutable

1.6. STL containers 27

https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-containers
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-containers

PYB11Generator Documentation, Release 1.0

references through the Python/C++ interface. We also have the option of making these bindings local to the module
or global: see PYB11_bind vector () for the full description.

1.6.2 std::map

Making std: :map instances mutable through the Python/C++ interface (opaque as described in pybindl1 terms)
is similar to our treatment of std: :vector. If in our module we need to use std: :map<std::string,
Aclass> as an opaque argument we simply add a line:

map_of_int_to_Aclass = PYBll_bind map("int", "Aclass", opaque=True)

Just as in our prior std: :vector examples, our module will now include a type map_of_int_to_Aclass
which we can use explicitly to pass this container between Python and C++ mutably.

1.7 Complications and corner cases

1.7.1 Cross-module inheritance

For the most part having C++ types exposed in different modules is transparent: so long as you import all the necessary
modules once they are all compiled and bound, everything just works. However, the exception to this rule is if you
want to bind a class in one module that inherits from a class bound in another. Suppose for instance we have two C++
classes (A and B), defined in two different headers A . hh and B . hh, as follows.

A hh:
struct A {
A() { printf("A::A()\n"); }

virtual ~A() { printf("A::~A()\n"); }
virtual int func(const int x) { printf("A::func(%d)\n", x); return x; }
by

B.hh:

#include "A.hh"

struct B: public A {

B(): A() { printf("B::B()\n"); }
virtual ~B() { printf("B::~B()\n"); }
virtual int func(const int x) override { printf ("B::func(%d)\n", x); return x*x; }

}i

We want to expose these two class in two different modules, Amodule and Bmodule. We will now need to annotate
the bindings for the A class with one piece of new information — the module it will be bound in. This is accomplished
with a new decorator: PYB1 1lmodule, and the bindings for Amodule might look like:

from PYBllGenerator import =«

PYBllincludes = ['"A.hh"']
@PYBllmodule ("Amodule") # <——— This 1s our new annotation
class A:

def pyinit (self):

(continues on next page)

28 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

(continued from previous page)

"Default constructor"”

@PYBllvirtual

def func(self, x="int"):
"A::func"
return "int"

Let’s suppose the above binding source is stored in file Amodule_bindings.py. We can now write our binding
source for Bmodule as normal, but we need to import Amodule_bindings so we can express the inheritance
relation between B and A:

from PYBllGenerator import =
import Amodule_bindings
PYBllincludes = ['""B.hh"']
class B (Amodule_bindings.A) :

def pyinit (self):
"Default constructor"

@PYBllvirtual

def func(self, x="int"):
"B::func"
return "int"

The @PYB11module decoration on A tells PYB11Generator how to generate the pybind11 code to correctly import
A rather than generate A locally, as described in the pybind11 documentation.

Note: It is critical here in the bindings for Bmodule that we use import Amodule_bindings, and do not
import A into the local scope using from Amodule_bindings import A!If we put A in the top-level scope
of our bindings for B, the binding code for A will be generated redundantly in the new bindings, and cause a conflict
when we try to import the two modules together.

1.7.2 Non-templated class inheriting from a templated class

PYB11Generator needs to know template parameters for templated classes in order to create concrete instantiations,
but since Python does not have the concept of templates we have adopted a two-stage process for creating template
class instantiations in PYB11 as described in Templated classes. However, if we have a non-templated class which in-
herits from a templated base, there is no longer the second-stage of this procedure using PYBI11TemplateClass ()
to instantiate the base with the proper template parameters.

It is possible to handle this situation, but it requires two decorations be applied to the non-templated descendant:

1. Because the descendant will inherit the template decoration of the base class, we must explicitly state that the
descendant has no template parameters with @PYBlltemplate ().

2. We still need to specify what template parameters should be used for the base class. Template param-
eters in PYB11Generator are specified using python dictionary matching, so we can directly insert the
proper template parameter choices in the appropriate dictionary for our non-templated descendant using
@PYBlltemplate_dict.

These two steps are best demonstrated by an example — consider the following C++ class hierarchy:

1.7. Complications and corner cases 29

https://pybind11.readthedocs.io/en/stable/advanced/misc.html#partitioning-code-over-multiple-extension-modules

PYB11Generator Documentation, Release 1.0

template<typename Valuel, typename Value2>
class A {
public:
A();
virtual ~A();
virtual std::string func(const Valuels& x, const Value2& y) const;

}i

class B: public A<double, int> ({
public:

B();

virtual ~B();

virtual std::string func(const double& x, const int& y) const;
}i

PYB11Generator can represent this hierarchy with:

@PYBlltemplate ("Valuel", "Value2")
class A:

def pyinit (self):
"Default A()"

@PYBllvirtual

@PYBllconst

def func(self, x="const
"Default A::func"
return "std::string"

>1)s&", y="const % (V

@PYBlltemplate () # <-—-— force not to,
—inherit template parameters from A

@PYBlltemplate dict ({"Valuel" : "double", "Value2" : "int"}) # <-—- specify the_
—template parameter substitutions

class B(A) :

def pyinit (self):
"Default B()"

@PYBllvirtual

@PYBllconst

def func(self, x="const double&", y="const int&"):
"B::func override"
return "std::string"

We still need to instantiate any versions of A that we need/use.
A_double_int = PYBllTemplateClass (A, template_parameters=("double", "int"))

1.7.3 Templated class inheritance with template parameter changes

Another variation on the above is the templated class inheritance where the template parameters are changed between
the base and descendant types. For example, consider the following class hierarchy:

template<typename Valuel, typename Value2>
class A {

}i

(continues on next page)

30 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

(continued from previous page)

template<typename Value2, typename Value3>
class B: public A<unsigned, Value2> {

}i

In this case the descendant B class inherits from A, but specializes one of the template arguments to unsigned.
Binding instantiations of A is straightforward using the methods described in Templated classes, but how should
we create instantiations of B? There are two choices: we can use PYBlltemplate_dict as above to specify the
Valuel template parameter for B, or we can explicitly give a dictionary for the template parameters in the instantiation
of B, including the definition for Valuel. The first pattern can be written as:

@PYBlltemplate ("Value2", "Value3")
@PYBlltemplate_dict ({"Valuel" : "unsigned"})
class B(A) :

B_double_int = PYBllTemplateClass (B, template_parameters=("double", "int")

Alternatively, we could choose to specify the exact same instantiation of B_double_int using an explicit dictionary
for template_parameters in the instantiation:

@PYBlltemplate ("Value2", "Value3")
class B(A):

B_double_int = PYBllTemplateClass (B, template_parameters=({"Valuel" : "unsigned",
"Value2" : "double",
"Value3" : "int"})

The end result for binding B_double_int is identical, so the choice of which pattern to use is up to the developer
and their preference.

1.8 PYB11 reserved variables

For the most part Python variables declared in module bindings are ignored by PYB11Generator. There are a few
exceptions to this rule though — some variables are used to communicate information to PYB11Generator as described
below.

PYBllincludes =[...] A list of strings, each of which represents a file that should be #include-ed in the final C++
generated file. For instance, if we needed the C++ to have the following include statements:

#include "A.hh"
#include <vector>

We would put this in our file for PYB11Generator:

’PYBllincludes = ['"A.hh"', '<vector>"']

PYB11namespaces = [...] A listof strings for C++ namespaces we wish to use in the generated C++ — as an example,
the following statement:

’PYBllnamespaces = ["extreme", "measures"]

1.8. PYB11 reserved variables 31

PYB11Generator Documentation, Release 1.0

results in the following in the generated pybind11 C++ source:

using namespace extreme;
using namespace measures;

PYB11scopenames =[...] A list of C++ types we want to directly declare with use (more focused than importing
an entire namespace). In order to decare we want to use std: : vector and MyNameSpace: : A, we could
use:

PYBllscopenames = ["std::vector", "MyNameSpace::A"]

which simply inserts the following in the generated C++:

using std::vector
using MyNameSpace: :A

PYBllpreamble = “...” PYBI11preamble is used to specify a string of arbitrary C++ code that will be inserted near
the top of the generated pybind11 source file. PYBllpreamble is a bit of catch-all, we could for instance
directly perform the tasks of PYB1lincludes and PYBllnamespace using PYBl lpreamble by simply
typing the final C++ code in here. One typical usage of this preamble variable is to insert small inline utility
methods directly in the final C++ code. For instance, if we had need of a simple function we want to use in the
subsequent bindings, we could do something like:

PYBllpreamble = """
namespace JustForBindings {
inline int square (int x) { return x=*x; }

} nun

and now our generated code will include this function.

PYB11modulepreamble = ¢...” PYB1Imodulepreamble is used to specify a string of arbitrary C++ code that will
be inserted following the PYBIND11_MODULE statement, so inside module scope. A typical use of this variable
is to insert macros such as PYBIND11_NUMPY_DTYPE (.. .) ', for native support of user defined types with
Numpy.

PYBllopaque =[...] A list of C++ types we want to be treated as opaque: typically STL types declared as opaque
and global in another module. See STL containers for further information. As an example, to declare that
std::vector<int>and std: :vector<std::string> are declared as opaque in another module:

PYBllopaque = ["std::vector<int>", "std::vector<std::string>"]

which results in the following inserted into the generated C++:

PYBIND11_MAKE_OPAQUE (std: :vector<int>)
PYBIND11_MAKE_OPAQUE (std::vector<std::string>)

Note all of these reserved variables affect the start of the generated pybind11 C++ code, coming before any of the
function, class, module, or other pybind11 declarations that are subsequently generated. The order that these meth-
ods are executed in is the same as they are listed above: first any PYBl11lincludes, then PYBllnamespaces,
PYBllscopenames, PYBllpreamble, and finally PYB11lopaque. If we were to include all of the above exam-
ples (in any order) in a single source code for instance like so:

PYBllincludes = ['"A.hh"', '<vector>"]
PYBllnamespaces = ["extreme", "measures"]
PYBllscopenames = ["std::vector", "MyNameSpace::A"]
PYBllpreamble = """

namespace JustForBindings {

(continues on next page)

32 Chapter 1. An important caveat about Python versions

PYB11Generator Documentation, Release 1.0

(continued from previous page)

inline int square(int x) { return xxx;

}

PYBllopaque = ["std::vector<int>", "std::vector<std::string>"]

the generated pybind11 code would look like:

#include "A.hh"
#include <vector>

using namespace extreme;
using namespace measures;

using std::vector
using MyNameSpace: :A

namespace JustForBindings {
inline int square (int x) { return x»*x;

PYBIND11l MAKE_OPAQUE (std::vector<int>)

PYBIND11_MAKE_OPAQUE (std: :vector<std::string>)

1.8.1 PYB11 variables for classes

There is also one reserved variable for class scope in PYB11:

PYB11typedefs = “....” A string of C++ to be inserted at the beginning of a class declaration. This is a bit of a
misnomer; the string can be any valid C++ for use in the class declaration scope. Suppose for instance we are
defining a class 2, and we want to declare some typedefs only for use in the scope of A:

class A:
PYBlltypedefs = """
typedef int IntType;

typedef double ScalarType;

wnon

which results in the following C++ code:

// Class A
{

typedef int IntType;
typedef double ScalarType;

(continues on next page)

1.8. PYB11 reserved variables

33

PYB11Generator Documentation, Release 1.0

(continued from previous page)

class_<A> obj(m, "A");

sonow IntType and ScalarType are avaiable as types in the scope where we are defining A.

1.9 PYB11 decorators

@PYBllignore
Specifies that the decorated object should be ignored by PYB11Generator, i.e., not processed to produce any
pybind11 binding output.

@PYBlltemplate ("typel”, "typel”, ...)
Indicates the object should be treated as a C++ template. Accepts any number of strings which represent the
names of the template arguments.

The succeeding python class or function can use the specified template argument strings as patterns for substi-
tation with python dictionary string replacement. So if we are binding a C++ templated function:

template<typename T>
T manipulate (const T& val);

The corresponding PYB11 template specfication would look like:

@PYBlltemplate ("T")
def manipulate(val = "const ")
return " "

@PYBlltemplate_dict
Explicitly specifies the dictionary of template args to values for use with @PYB1lltemplate types.

NOTE: this is a highly unusual pattern to need/use. It is preferable to use the ordinary PYB1 1 template instantion
methods PYBl1lTemplateClass, PYBl1lTemplateMethod, or PYBl1lTemplateFunction.

@PYBllsingleton
Specifies that the decorated object should be treated as a C++ singleton.

@PYBllholder (holder_type)
Specify a special C++ holder for the generated type in pybind, rather than the usual default
std: :unique_ptr. See pybindl1 documentation on using shared_ptr as a holder type.

@PYBlldynamic_attr
Make the wrapped class modifiable, i.e., allow attributes to be added dynamically to an instance of the class in
python. See pybind11 documentation about dynamic attributes.

@PYBllnamespace ("val")
Set the namespace the C++ type should be found in.

@PYBllcppname ("val")
Give a value for the C++ name of the decorated function, class, or method. Overrides the default assumption
that the C++ name is the same as that given for the object in the PYB11 python binding file.

@PYBllpycppname ("val")
Simultaneously set the Python and C++ name of the decorated function, class, or method. Shorthand for speci-
fying both @PYB1lpyname and @PYB11cppname to the given "val".

34 Chapter 1. An important caveat about Python versions

https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#std-shared-ptr
https://pybind11.readthedocs.io/en/stable/classes.html?highlight=dynamic_attr#dynamic-attributes

PYB11Generator Documentation, Release 1.0

@PYBllvirtual
Mark a class method as virtual.

@PYBllpure_virtual
Mark a class method as pure virtual, making the class abstract.

@PYBllprotected
Mark a class method as protected.

@PYBllconst
Mark a class method as const.

@PYBllstatic
Mark a class method as static.

@PYBllnoconvert
Applies py: :noconvert to all the arguments of a method to prevent automatic conversion. See pybindl1
discussion of py::.

@PYBllimplementation ("val")
Give an implementation for the bound function or method. This is typically used to specify lambda function
implementations, or explicitly call a helper method.

@PYBllreturnpolicy ("val")
Specify a pybindl1 return policy for the return value of a function or method. This is a tricky topic that if
misused can create memory errors, but is at times absolutely necessary to get the expected behavior from the
underlying C++ code and types. Before using this method carefully read the pybind11 discussion about Return
value policies.

@PYBllkeepalive (a, b)
Tie the lifetime of objects in the return value/argument spec together, where the arguments (a, b) are integers
indicating the order of the arguments to tie together (0 refers to the return value). This is another way of spec-
ifying memory policies, similar to refurnpolicy. Carefully read the pybind11 discussion of the keep_alive
directive in Additional call policies.

@PYBllcall_ guard('val")
Specify a pybindl1 call_guard for a function or method. See the discussion of pybindlil:call_policies for
examples of call_guards.

@PYBllmodule ("val")
Indicate the object should be imported from the specified python module. This is useful for classes wrapped in
one module which are needed in another, such as for inheritance.

1.10 PYB11 special functions and classes

This section describes the special functions and classes defined in PYB11Generator for use in createing python bind-
ings. Note we use the convention that PYB11 internals always start with the PYB11 prefix.

PYBllgenerateModule (pymodule [, basename=None])
Inspect the function and class definitions in pymodule, and write a C++ file containing pybind11 statements
to bind those interfaces.

* pymodule: the module to be introspected for the interface

* "basename": a basename for the generated C++ file. If specified, the output is written to basename.
cc, otherwise output will be written to pymodule.cc

1.10. PYB11 special functions and classes 35

https://pybind11.readthedocs.io/en/stable/advanced/functions.html?highlight=noconvert#non-converting-arguments
https://pybind11.readthedocs.io/en/stable/advanced/functions.html?highlight=noconvert#non-converting-arguments
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies

PYB11Generator Documentation, Release 1.0

PYBllTemplateFunction (func_template, template _parameters[, cppname = None, pyname = None, do-

cext = HH])
Instantiate a function template (func_template) that was decorated by @PYBlltemplate.

* func_template: The template function definition

* template_parameters: A single string (for a single template parameter function) or tuple of strings
(for multiple template parameters), one for each template parameter defined by @PYBlltemplate on
func_template.

* cppname: The name of the C++ function template, if different from that used for func_template.

* pyname: The name of the resulting Python function; defaults to the name of the instance created for this
invocation of PYBl1TemplateFunction.

e docext: An optional string extension to be applied to the docstring associated with func_template.

PYBllattr([value:None, pyname:None])
Create an attribute in a module; corresponds to the pybind11 command attr.

e value: define the C++ name this variable corresponds to. If None, defaults to the name of the local
python variable.

* pyname: define the generated python attribte name. If None, defaults to the name of the local python
variable.

PYBllreadwrite ([static:False, pyname=None, cppname=None, returnpolicy=None, doc=None])
Define a readwrite class attribute; corresponds to pybindl1 def_readwrite.
* static: If True, specifies the bound attribute is static.

e pyname: Optionally specify the Python name of the attribute. If None, assumes the Python
name is the name of Python variable instance.

* cppname: Optionally specify the C++ name of the attribute. If None, assumes the C++ name

is the name of Python variable instance.

e returnpolicy: Specify a special return policy for how to handle the memory of the return value. Read
pybind11 documentation at Return value policies.

e doc: Optionally give a docstring.
PYBllreadonly ([static:False, pyname=None, cppname=None, returnpolicy=None, doc:None])
Define a readonly class attribute; corresponds to pybind11 def_readonly.

e static: If True, specifies the bound attribute is static.

* pyname: Optionally specify the Python name of the attribute. If None, assumes the Python name is the
name of Python variable instance.

* cppname: Optionally specify the C++ name of the attribute. If None, assumes the C++ name is the name
of Python variable instance.

* returnpolicy: Specify a special return policy for how to handle the memory of the return value. Read
pybind11 documentation at Return value policies.

* doc: Optionally give a docstring.

PYBllproperty ([returnType = None, getter = None, setter = None, doc = None, getterraw = None, setter-
raw = None, getterconst = True, setterconst = False, static = None, returnpolicy = None

b
Helper to setup a class property.

36 Chapter 1. An important caveat about Python versions

https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies

PYB11Generator Documentation, Release 1.0

returnType: Specify the C++ type of the property

getter: A string with the name of the getter method. If None, assumes the getter C++ specification
looks like returnType (klass::) () const.

setter: A string with the name of the setter method. If None, assumes the setter C++ specification
looks like void (klass::*) (returnType& val).

doc: Specify a document string for the property.

getterraw: Optionally specify raw coding for the getter method. Generally this is used to insert a C++
lambda function. Only one of getter or getterraw may be specified.

setterraw: Optionally specify raw coding for the setter method. Generally this is used to insert a C++
lambda function. Only one of setter or setterraw may be specified.

getterconst: Specify if getter is a const method.
setterconst: Specify if setter is a const method.
static: If True, make this a static property.

returnpolicy: Specify a special return policy for how to handle the memory of the return value. Read
pybind11 documentation at Return value policies.

PYBllTemplateMethod (func_template, template _parameters[, cppname = None, pyname = None, docext

0

Instantiate a class method (func_template) that was decorated by @PYBlltemplate.

func_template: The template method definition

template_parameters: A single string (for a single template parameter method) or tuple of strings
(for multiple template parameters), one for each template parameter defined by @PYBlltemplate on
func_template.

cppname: The name of the C++ method template, if different from that used for func_template.

pyname: The name of the resulting Python method; defaults to the name of the instance created for this
invocation of PYB11TemplateMethod.

docext: An optional string extension to be applied to the docstring associated with func_template.

PYBllTemplateClass (klass_template, template _parameters[, cppname = None, pyname = None, docext

- vrrl])

Instantiate a class template (klass_template) that was decorated by @PYBlltemplate.

PYBllenum (values[, name=None, namespace=

klass_template: The template class definition

template_parameters: A single string (for a single template parameter class) or tuple of strings
(for multiple template parameters), one for each template parameter defined by @PYBlltemplate on
klass_template.

cppname: The name of the C++ class template, if different from that used for klass_template.

pyname: The name of the resulting Python class; defaults to the name of the instance created for this
invocation of PYB11TemplateClass.
docext: An optional string extension to be applied to the docstring associated with klass_template.

"

, cppname=None, export_values=False, doc:None])

Declare a C++ enum for wrapping in pybind11 — see pybind11 docs.

values: atuple of strings listing the possible values for the enum

name: set the name of enum type in Python. None defaults to the name of the instance given this enum
declaration instance.

1.10. PYB11 special functions and classes 37

https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types

PYB11Generator Documentation, Release 1.0

* namespace: an optional C++ namespace the enum lives in.
e cppname: the C++ name of the enum. None defaults to the same as name.

» export_values: if True, causes the enum values to be exported into the enclosing scope (like an old-style
C enum).

¢ doc: an optional document string.

PYB11l bind vector (element[, opaque=False, local=None])
Bind an STL::vector explicitly. This is essentially a thin wrapper around the pybind11 py: :bind_vector
function (see Binding STL containers).

e element: the C++ element type of the std: : vector

* opaque: if True, causes the bound STL vector to be “opaque”, so elements can be changed in place
rather than accessed as copies. See Binding STL containers.

* local: determines whether the binding of the STL vector should be module local or not; once again, see
Binding STL containers.

PYB11l_bind_map (key, value[, opaque=False, localzNone])
Bind an STL::map explicitly. This is a thin wrapper around the pybindl1l py: :bind_map function (see
Binding STL containers).

* key: the C++ key type
e value: the C++ value type

* opaque: if True, causes the bound STL map to be “opaque”, so elements can be changed in place rather
than accessed as copies. See Binding STL containers.

e local: determines whether the binding of the STL map should be module local or not; once again, see
Binding STL containers.

PYB11l_iniject (fromcls, tocls[, virtual=None, pure_virtual=N0ne])
Convenience method to inject methods from class fromcls into tocls. This is intended as a utility to help
avoiding writing redundant methods common to many classes over and over again. Instead a convenience class
can be defined containing the shared methods (typically screened from generation by @PYB11lignore), and
then PYB11_inject is used to copy those methods into the target classes.

e fromcls: Python class with methods we want to copy from.
* tocls: Python class we’re copying methods to.
e virtual: if True, force all methods we’re copying to be treated as virtual.

e pure_virtual: if True, force all methods we’re copying to be treated as pure virtual.

38 Chapter 1. An important caveat about Python versions

https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

39

PYB11Generator Documentation, Release 1.0

40

Chapter 2. Indices and tables

Index

P

PYB11l_bind_map () (built-in function), 38
PYB11l _bind_vector () (built-in function), 38
PYB11_inject () (built-in function), 38
PYBllattr () (built-in function), 36
PYBllcall_guard() (built-in function), 35
PYBllconst () (built-in function), 35
PYBllcppname () (built-in function), 34
PYBlldynamic_attr () (built-in function), 34
PYBllenum () (built-in function), 37
PYBllgenerateModule () (built-in function), 35
PYBllholder () (built-in function), 34
PYBllignore () (built-in function), 34
PYBllimplementation () (built-in function), 35
PYBllkeepalive () (built-in function), 35
PYBllmodule () (built-in function), 35
PYBllnamespace () (built-in function), 34
PYBllnoconvert () (built-in function), 35
PYBllproperty () (built-in function), 36
PYBllprotected () (built-in function), 35
PYBllpure_virtual () (built-in function), 35
PYBllpycppnamnme () (built-in function), 34
PYBllreadonly () (built-in function), 36
PYBllreadwrite () (built-in function), 36
PYBllreturnpolicy () (built-in function), 35
PYBllsingleton () (built-in function), 34
PYBllstatic () (built-in function), 35
PYBlltemplate () (built-in function), 34
PYBlltemplate_dict () (built-in function), 34
PYBl1lTemplateClass () (built-in function), 37
PYBl1lTemplateFunction () (built-in function), 35
PYBl1TemplateMethod () (built-in function), 37
PYBllvirtual () (built-in function), 34

41

	An important caveat about Python versions
	Introduction to PYB11Generator
	Functions
	Classes
	Enums
	Memory management
	STL containers
	Complications and corner cases
	PYB11 reserved variables
	PYB11 decorators
	PYB11 special functions and classes

	Indices and tables
	Index

