
PYB11Generator Documentation
Release 2.0

J. Michael Owen

Apr 27, 2023

Contents:

1 Introduction to PYB11Generator 3
1.1 Installation . 3
1.2 The basics: how to generate pybind11 code using PYB11Generator 4
1.3 A first example start to finish . 4

2 Functions 7
2.1 Ordinary and overloaded functions . 7
2.2 Default argument values . 8
2.3 C++ template functions . 9
2.4 Explicitly defining the binding implementation for a function . 10
2.5 Preventing automatic casting of arguments . 11

3 Classes 13
3.1 Constructors . 14
3.2 Inheritance . 15
3.3 Methods . 16
3.4 Special class operators and methods . 19
3.5 Templated methods . 24
3.6 Attributes . 25
3.7 Properties . 25
3.8 Dynamic attributes . 26
3.9 Singletons . 27
3.10 Templated classes . 27

4 Enums 29

5 Memory management 31
5.1 Class holder types . 31
5.2 Return value policies . 32
5.3 Call policies . 32
5.4 Call guards . 33

6 STL containers 35
6.1 std::vector . 35
6.2 std::map . 36

7 Complications and corner cases 37

i

7.1 Cross-module inheritance . 37
7.2 Non-templated class inheriting from a templated class . 38
7.3 Templated class inheritance with template parameter changes . 40

8 Using CMake to build PYB11Generator modules 41

9 PYB11 reserved variables 45
9.1 PYB11 variables for classes . 47

10 PYB11 decorators 49

11 PYB11 special functions and classes 51

12 Indices and tables 55

Index 57

ii

PYB11Generator Documentation, Release 2.0

PYB11Generator is a python based code generator that creates pybind11 code for binding C++ libraries as extensions
in Python. PYB11Generator parses input that is very close to writing the desired interface in native python, turning
this into the corresponding pybind11 C++ code.

Note: Since PYB11Generator blindly generates C++ pybind11 code, it is essential to understand the pybind11
package itself as well! In other words, be sure to read and understand the pybind11 documentation before trying to
go too far with PYB11Generator. The purpose of PYB11Generator is to reduce the burden of writing and maintaining
redundant code when working with pybind11 (such as the trampoline classes required by Overriding virtual functions
in Python), and provide a natural syntax for those already familiar with writing interfaces in Python. However, since
the generated pybind11 code produced by PYB11Generator is what is actually compiled by a C++ compiler to create
the corresponding python package, any errors reported by the compiler will refer to this generated code, and require
understanding pybind11 itself to properly interpret.

Note: PYB11Generator is now Python 3 only – for users of Python 2 the last version of PYB11Generator supporting
Python 2 is 1.0.12 (available from PyPI and Github).

Contents: 1

https://github.com/pybind/pybind11
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals

PYB11Generator Documentation, Release 2.0

2 Contents:

CHAPTER 1

Introduction to PYB11Generator

Using PYB11Generator to write the interface for a C++ binding is intended to emulate writing that same interface in
Python, so if you’re familiar with Python it should be easy to get started with PYB11Generator. As an example, if we
have a header for a C++ function that looks like:

// A really important function!
int func();

We can define the PYB11Generator prescription for binding this method by writing a Python method as:

def func():
"A really important function!"
return "int"

Wherever possible we try to use ordinary Python syntax to correspond to pybind11/C++ constructs: Python functions
correspond to and generate binding code for C++ functions as above; a Python class generates binding code for
pybind11 to bind a C++ class; arguments for functions and methods in Python generate corresponding argument
specifications in C++ function pointer syntax. Because Python is not a strongly typed language, we specify C++ types
using strings (if needed) as above, where we specify the return int type by returning the string "int" from func.
We also use Python decorators to annotate Python methods with uniquely C++ concepts such as const, virtual,
etc., as will be discussed in succeeding sections.

1.1 Installation

PYB11Generator uses the Python Package Index PyPI to simplify installation of PYB11Generator, so installing
PYB11Generator is simply a matter of requesting it using pip:

$ pip install PYB11Generator

This command installs PYB11Generator (and pybind11 since it is a dependency of PYB11Generator) as packages in
the Python you are using (i.e., the Python associated with the pip command).

For those curious, the source for PYB11Generator is hosted on github.

3

https://pypi.org/
https://packaging.python.org/tutorials/installing-packages/
https://github.com/jmikeowen/pyb11generator

PYB11Generator Documentation, Release 2.0

Another approach (if you are using git for source code control) is to include PYB11Generator as a submodule of your
project, in which case PYB11Generator and pybind11 (which is a submodule of PYB11Generator) will be available for
use in your project directly. See the Git documentation on submodules for more information. This can also simplify
building if you are using CMake as your build system, since this makes the PYB11Generator CMake extensions
available as well. Use of CMake to build PYB11Generator generated modules is discussed Building with CMake.

1.2 The basics: how to generate pybind11 code using
PYB11Generator

PYB11Generator works by starting up a Python process, importing a module containing Python defini-
tions for functions and classes corresponding to the C++ interface to be bound, and invoking the function
PYB11generateModule on the imported Python module, which writes out a C++ file of pybind11 statements
binding that interface. This generated pybind11 C++ file is what is compiled by a C++ compiler to create the final
Python shared module allowing the C++ methods and classes to be exercised from Python. As an example, if we have
created a Python file mymodule.py containing the Python description of the C++ methods we wish to expose in a
module to be called mymodule, we can invoke PYB11generateModule to create the intermediate C++ file as:

python -c 'from PYB11Generator import *; import mymodule;
→˓PYB11generateModule(mymodule)'

resulting in the creation of a C++ source file mymodule.cc. A full description of the PYB11generateModule
interface is given in PYB11 special functions and classes.

1.3 A first example start to finish

To explicitly demonstrate the stages of creating bindings using PYB11Generator, here we recreate an early example
in the pybind11 documentation: Creating bindings for a simple function. Say we want to wrap the following C++
method:

int add(int i, int j) {
return i + j;

}

We can use PYB11Generator to create the same pybind11 code used to wrap this method in the pybind11 tutorial by
writing a file simple_example.py containing:

"pybind11 example plugin"

PYB11preamble = """
int add(int i, int j) {

return i + j;
}
"""

def add():
"A function which adds two numbers"
return

Now executing the command:

$ python -c 'from PYB11Generator import *; import simple_example;
→˓PYB11generateModule(simple_example, "example")'

4 Chapter 1. Introduction to PYB11Generator

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://cmake.org/
https://pybind11.readthedocs.io/en/stable/compiling.html#cmake
https://pybind11.readthedocs.io/en/stable/basics.html#simple-example

PYB11Generator Documentation, Release 2.0

creates a file example.cc, which looks like (omitting the boilerplate preamble code with #include’s):

int add(int i, int j) {
return i + j;

}

//--
// Make the module
//--
PYBIND11_MODULE(example, m) {

m.doc() = "pybind11 example plugin" ;

//...
// Methods
m.def("add", &add, "A function which adds two numbers");

}

This is identical to the native pybind11 binding code from the pybind11 tutorial Creating bindings for a simple func-
tion, modulo some comments. This code can now be compiled to the final Python shared module as described this
same pybind11 tutorial:

$ c++ -O3 -Wall -shared -std=c++11 -fPIC `python -m pybind11 --includes` example.cc -
→˓o example.so

A few things worth noting:

• This example uses the fact that if the function being wrapped is unambiguous, allowing us to use a bare C++
function pointer (without the full explicit function prescription). This is reflected in the PYB11Generator syntax
when we write the def add() function in python without arguments or a return type.

• In order to directly insert the C++ function definition into the resulting C++ file, we have used the special
variable PYB11preamble variable. A more typical use case will require #include-ing the necessary C++
header files in the generated code, which is accomplished through another special variable, PYB11includes,
described in PYB11 reserved variables.

• In general special variables and commands to PYB11Generator use the prefix PYB11 such as
PYB11preamble in this example.

• Note also that ordinary Python doc strings (both for the module and function) are picked up from
simple_example.py and propagated to the pybind11 bindings.

This example demonstrates the steps necessary to create a usable Python module using PYB11Generator:

1. Create a Python file describing the desired interface using ordinary Python syntax, based on the C++ methods
and classes to be bound.

2. Run a Python line like above to generate the pybind11 C++ code from this Python input.

3. Compile the resulting pybind11 C++ code to create the Python shared module.

In the following sections we describe the nuances of creating the PYB11 Python input files in much more detail; we
will not show the compilation examples beyond this point since it is no different than using pybind11 directly, and the
above example pretty much covers it.

1.3. A first example start to finish 5

https://pybind11.readthedocs.io/en/stable/basics.html#simple-example
https://pybind11.readthedocs.io/en/stable/basics.html#simple-example

PYB11Generator Documentation, Release 2.0

6 Chapter 1. Introduction to PYB11Generator

CHAPTER 2

Functions

We have already introduced a quick example of binding a function in A first example start to finish; this section will
go into more detail on how to generate pybind11 bindings for functions, including complications such as overloaded
methods and C++ templates.

2.1 Ordinary and overloaded functions

Suppose we have a header defining the following functions that we wish to bind for Python:

double unique_function(int a, double b);
double overloaded_function(int a, int b, int c);
double overloaded_function(double a, double b, double c);

We can use PYB11Generator to bind these functions with a file containing the following code:

from PYB11Generator import * # Necessary to get decorators

def unique_function():
"This is a unique function prescription, and so requires no details about

→˓arguments or return types"
return

def overloaded_function(a = "int",
b = "int",
c = "int"):

"This is the version of overloaded_function that takes ints"
return "double"

@PYB11pycppname("overloaded_function")
def overloaded_function1(a = "double",

b = "double",
c = "double"):

(continues on next page)

7

PYB11Generator Documentation, Release 2.0

(continued from previous page)

"This is the version of overloaded_function that takes doubles"
return "double"

The first function unique_function is trivial, since it is unambiguous and can be wrapped with an unadorned C++
function pointer as shown in A first example start to finish. In this case PYB11Generator assumes the C++ function
name is the same as the Python function name, and all is simple.

The overloaded functions take a bit more work. The first challenge is that Python does not support the concept of func-
tion overloading: two Python functions cannot have the same name. Therefore we need to use unique Python names
for the C++ overloaded_function Python descriptions, which is why we define overloaded_function
and overloaded_function1 in the source for PYB11Generator. In order to tell PYB11Generator that we really
want to call overloaded_function1 overloaded_function in both the C++ and Python bindings, we use
our first PYB11 decorator: PYB11pycppname. This decorator tells PYB11Generator that that function in question
is really called overloaded_function in C++, and we wish the Python name in the resulting binding code to
call this function overloaded_function in Python as well. This is actually two statements, and there are two
PYB11 decorators that can do these individual tasks independently if needed (PYB11cppname and PYB11pyname):
PYB11pycppname is simply a convenient shorthand combination to cover the common case of wanting to simul-
taneously rename the bound method for C++ and Python. For a full listing of the PYB11 decorators see PYB11
decorators.

Note we have also now specified the arguments and return types for both bindings of overloaded_function.
This is required since the C++ functions are overloaded, and in order for the C++ compiler to distinguish which
one we want it is necessary to fully specify the function signatures for the function pointers in the pybind11
binding code. PYB11Generator always checks the return value for a wrapped function: if a return value is
present, it should be a string describing the C++ return type (as shown here, with both overloaded_function
and overloaded_function1 returning the string value "double"). If such a return value is specified,
PYB11Generator assumes a fully qualified C++ function pointer signature is required, and will also look for and
generate the argument types as well. The function arguments should be named what the argument name will be
in the resulting Python code, and set equal to a string with the C++ type of the argument as shown above for the
overloaded_function descriptions. Note, a C++ void return value or argument should be set to the string
"void" for PYB11Generator for such explicit specifications.

2.2 Default argument values

Another useful feature of pybind11 is the ability to specify default values for arguments to functions/methods in
Python, and naturally PYB11Generator supports this feature as well. In order to specify a default value for an ar-
gument, we set the value of the argument in the Python binding code as a tuple, where the first element is a string
describing the C++ type, and the second a string with the C++ default value. As an example suppose we wish to bind
the following function that has two arguments (an int and a std::string):

void howToDrawADragon(int numberOfBeefyArms, std::string label name);

and we want to use the default values 1 and "Trogdor" for these arguments. The PYB11Generator code would then
look like:

def howToDrawADragon(numberOfBeefyArms = ("int", "1"),
name = ("std::string", "Trogdor")):

return "void"

8 Chapter 2. Functions

PYB11Generator Documentation, Release 2.0

2.3 C++ template functions

C++ templates present another challenge, as this another concept not found in Python. Suppose we wish to expose
several instantiations of the following method:

template<typename ValueA, typename ValueB, typename ValueC>
ValueC
transmogrify(const ValueA& x, const ValueB& y);

It is always possible to explicitly (and repetitively) define the function over and over again for each template instan-
tiation combination of (ValueA, ValueB, ValueC), but we would rather write the prescription once and have the
computer generate the necessary redundant code. PYB11Generator has such a facility: a template method can be
defined with the @PYB11template decorator, which takes the template arguments as a set of string arguments. The
function can then be instantiated as many times as needed using the function PYB11TemplateFunction. The
complete PYB11Generator binding code then might look like:

from PYB11Generator import * # Necessary to get decorators and
→˓PYB11TemplateFunction

@PYB11template("ValueA", "ValueB", "ValueC")
def transmogrify(x = "const %(ValueA)s&",

y = "const %(ValueB)s&"):
"I'm sure this does something useful..."
return "%(ValueC)s"

transmogrifyIntIntDouble = PYB11TemplateFunction(transmogrify, ("int", "int", "double
→˓"), pyname="transmogrify")
transmogrifyI32I32I64 = PYB11TemplateFunction(transmogrify, ("uint32_t", "uint32_t
→˓", "uint64_t"), pyname="transmogrify")

The first thing to note when defining a template function is that the template arguments can be used as Python string
dictionary substitution variables, as shown above in the definition of transmogrify. Since we have defined the
template parameters using the decorator @PYB11template("ValueA", "ValueB", "ValueC")we can use
%(ValueA)s, %(ValueB)s, or %(ValueC)s in the body of the function, as we do in this case defining the
arguments and return type.

Because we have decorated the transmogrify function with @PYB11template, PYB11 will not generate
any pybind11 code directly from this function. Instead we must define instantiations of such template functions
using the PYB11 function PYB11TemplateFunction. In this example we have created two such instantia-
tions, and could continue making as many as we wish for different types. Note in this example we have made
these different instantiations overloaded in Python by forcing them all to have the name transmogrify via the
pyname="transmogrify" argument. This is not necessarily required: we must give each instantiation of the
template a unique name in Python (transmogrifyIntIntDouble and transmogrifyI32I32I64 in this
case), and if we are happy with those being the Python names of the wrapped results we need not specify pyname.
Such unique names in Python are safest, in that which instantiation the user wants to call down the line in the wrapped
library call is unambiguous, but often it is nicer to force the Python names to match the C++ as we do in this case.

For a full description of PYB11TemplateFunction see PYB11TemplateFunction().

Note: In this example we have used the common case of C++ templates declared with typename (as in
template<typename T1, typename T2>). However, for C++ templates can also use specialized parame-
ters, such as

template<int T1, double T2> func(const double x);

2.3. C++ template functions 9

PYB11Generator Documentation, Release 2.0

In such cases we need need to specify these template parameters appropriately to PYB11Generator. This is done by
explictly declaring the types of the template parameters in PYB11template:

@PYB11template("int T1", "double T2")
def func(x = "const double"):

"What does this function do?"
return

2.4 Explicitly defining the binding implementation for a function

In some instances it is useful to take direct control of or modify how a given function is exposed to Python.
PYB11Generator allows the user to directly specify what is passed in-place of the function pointer in such cases
via the @PYB11implementation decorator. There are far too many possible use cases for this direct control to
possibly discuss, but as an example suppose we have a function like the following that uses an exotic container type
as an argument:

void ExoticContainer permutate(const ExoticContainer& c);

If pybind11 knows nothing about the ExoticContainer class, and we would rather expose this to Python using
ordinary Python lists, we could use the following pattern to wrap a list based interface around permutate:

@PYB11implementation("""[](py::list c) -> py::list {
ExoticContainer ccopy;
for (const auto& x: c) ccopy.

→˓push_back(x);
permutate(ccopy);
py::list result;
for (const auto& x: ccopy)

→˓result.append(x);
return result;

}""")
def permutate(c = "py::list"):

return "py::list"

The resulting pybind11 code is:

m.def("permutate", [](py::list c) -> py::list {
ExoticContainer ccopy;
for (const auto& x: c) ccopy.push_

→˓back(x);
permutate(ccopy);
py::list result;
for (const auto& x: ccopy) result.

→˓append(x);
return result;1

}, "c"_a);

so as you can see @PYB11implementation allows the author to directly control the code inserted in the usual spot
for a function pointer. Note that the argument spec is still generated ("c"_a in this example), including any default
arguments defined as described above in Default argument values.

10 Chapter 2. Functions

PYB11Generator Documentation, Release 2.0

2.5 Preventing automatic casting of arguments

In C++ automatic casting of arguments which are implicitly convertible to a different type (such as calling a function
that accepts a double argument with an int) is usually allowed. In pybind11 it is possible to prevent this behavior
using the .noconvert() option to a Python argument, such as py::arg().noconvert(). PYB11Generator
supports the idea of noconvert as well, though in a less granular fashion currently as it is used to decorate an entire
function signature rather than individual arguments. For instance, if we wanted to bind the following method and
ensure automatic conversions of the argument are prevented:

double munge_my_double(double x);

we can accomplish this using the @PYB11noconvert decorator:

@PYB11noconvert
def munge_my_double(x = "double"):

return "double"

See the pybind11 discussion for more information.

2.5. Preventing automatic casting of arguments 11

https://pybind11.readthedocs.io/en/stable/advanced/functions.html?highlight=noconvert#non-converting-arguments

PYB11Generator Documentation, Release 2.0

12 Chapter 2. Functions

CHAPTER 3

Classes

Binding classes in PYB11Generator is based on writing the desired interface as a Python class, similar to the process
for Functions. As a first example consider the example struct used as the first such example in the pybind11 class
documentation Object-oriented code:

struct Pet {
Pet(const std::string &name) : name(name) { }
void setName(const std::string &name_) { name = name_; }
const std::string &getName() const { return name; }

std::string name;
};

This struct can be wrapped in straightforward fashion in PYB11Generator as:

class Pet:

def pyinit(self,
name = "const std::string&"):

return

def setName(self,
name = "const std::string&"):

return "void"

def getName(self):
return "const std::string"

Processing this Python class definition through PYB11Generator results in the following (omitting generic preamble
code):

// Class Pet
{

py::class_<Pet> obj(m, "Pet");

(continues on next page)

13

https://pybind11.readthedocs.io/en/stable/classes.html#classes

PYB11Generator Documentation, Release 2.0

(continued from previous page)

// Constructors
obj.def(py::init<const std::string&>(), "name"_a);

// Methods
obj.def("setName", (void (Pet::*)(const std::string&)) &Pet::setName, "name"_a);
obj.def("getName", (const std::string (Pet::*)()) &Pet::getName);

}

which is very similar to the native pybind11 code presented in Object-oriented code. This example demonstrates a few
important aspects of generating class bindings with PYB11Generator:

• A python class results in the generation of a pybind11 class_<> declaration.

• Binding class methods with PYB11Generator is directly analogous to binding free functions: we write the
method signature in python syntax, with the arguments set equal to the C++ type as a string.

– If the C++ class method is unambiguous (not overloaded), then just as with functions we can specify the
method in python with no arguments and an empty return value.

– If a default value for an argument is desirable, simply set the argument equal to a tuple of two strings: arg
= ("C++ type", "C++ default value"), identically to the treatment of functions in Default
argument values.

• Constructors are specified by any class method starting with the string pyinit.

3.1 Constructors

In general PYB11Generator interprets methods of classes as ordinary methods to exposed via pybind11 – the one
exception to this rule is class constructors. Any method that begins with the name pyinit is interpreted as a class
constructor, allowing the specification of an arbitrary number of constructors. For instance, if we have a C++ class
with the following constructors:

class A {
public:

A(); // Default constructor
A(const std::string name); // Build with a name, default

→˓priority
A(const std::string name, const int priority); // Build with a name and priority

};

We can bind these three different constructors using the following Python specification:

class A:
"A class that does something with a string and an int..."

def pyinit(self):
"Default constructor"

def pyinit1(self, name="const std::string"):
"Build with a name, default priority"

def pyinit2(self, name="const std::string", priority="const int"):
"Build with a name and priority"

For constructors it does not matter what names are used past the pyinit string: any such name will be interpreted
as a constructor. All that is required is that any class pyinit* name be unique – remember, python does not allow

14 Chapter 3. Classes

https://pybind11.readthedocs.io/en/stable/classes.html#classes

PYB11Generator Documentation, Release 2.0

overloading, so defining successive methods with the same name simply causes the earlier method definitions to be
lost. Not that the author has made such mistakes in creating my own binding code. . .

3.2 Inheritance

Class inheritance hierarchies in C++ are simple to reflect in PYB11Generator, as this is an OO concept shared by both
C++ and Python: all that is required is to reflect the inheritance hierarchy in the Python PYB11 code. In order to
expose the following C++ classes:

class A {
public:

A(); // Default constructor
int func(int x); // Some useful function of A

};

class B: public A {
public:

B(); // Default constructor
double dfunc(double x); // Some useful function of B

};

we can simply reflect this object hiearchy in the PYB11Generator code:

class A:

def pyinit(self):
"Default constructor"

def func(self, x="int"):
"Some useful function of A"
return "int"

class B(A):

def pyinit(self):
"Default constructor"

def dfunc(self, x="double"):
"Some useful function of B"
return "double"

Note: Cross module inheritance (binding a class in one module that inherits from a class bound in another) is a
slightly trickier case. See the discussion in Cross-module inheritance for an example of how to do this.

Note: Another esoteric case is having a non-templated class inherit from a templated one. A method of handling this
situation is discussed in Non-templated class inheriting from a templated class.

3.2. Inheritance 15

PYB11Generator Documentation, Release 2.0

3.3 Methods

Class methods are wrapped much like free functions using PYB11Generator: we simply define a python class method
with the desired name. If the method is unambiguous (not overloaded), we do not necessarily have to specify the return
types and arguments (though full specifications are always allowed, and at times preferable to generate more explicit
help in Python). The syntax for specifying C++ return types and arguments for methods is identical to that used for
for Functions, as is evident in the examples below.

3.3.1 Overloaded methods

Just as with Ordinary and overloaded functions, overloaded methods require full call specifications, as well as unique
names in python. We use the PYB11 decorators @PYB11pyname, @PYB11cppname, or @PYB11pycppname to
link the proper C++/Python names as needed. As an example, consider the following C++ class:

class A {
public:

int process(const int x); // Process the internal state somehow
→˓to answer this query
std::string label(); // Return a string label
std::string label(const std::string suffix); // Return a string label including a

→˓specified suffix
}

In this case we have one unambiguous method (process), and two overloaded methods (label). We can write
PYB11Generator bindings for these methods as:

class A:

def process(self):
"Process the internal state somehow to answer this query"
return

def label(self):
"Return a string label"
return "std::string"

@PYB11pycppname("label")
def label1(self, suffix="const std::string"):

"Return a string label including a specified suffix"
return "std::string"

We have chosen to bind the unambiguous A::process method using no method signature (i.e., no return type or
arguments) for brevity. The overloaded A::label methods however require the complete method prescriptions be
specified in order for the compiler to know which C++ A::label we are referring to. Because Python does not
allow class methods with the same name however, we must use unique method names in our Python class binding
(hence A.label and A.label1). We use the PYB11 decorator @PYB11pycppname on A.label1 to indicate
we want the bound Python and C++ names to be label. This is identical to how this overloading problem is handled
for Ordinary and overloaded functions.

Note: In this example we have made the typical choice to overload the label method in Python just as in C++.
We could, however, decide to leave the Python label and label1 methods with unique names, removing the
unpythonic overloading concept from the python interface. If we want to leave the Python name of the second binding
of A::label as A.label1, we still need to tell PYB11Generator that the C++ name is A::label rather than
A::label1. In this case we would simply change the decorator to specify the C++ name alone:

16 Chapter 3. Classes

PYB11Generator Documentation, Release 2.0

@PYB11cppname("label")
def label1(self, suffix="const std::string"):

"Return a string label including a specified suffix"
return "std::string"

3.3.2 Const methods

Const’ness is a concept in C++ not shared by Python, so we use a decorator (@PYB11const) to denote a const
method when needed. For instance, the following C++ class definition:

class A {
public:

int square(const int x) const { return x*x; } // Return the square of the argument
};

can be specified in PYB11 using:

class A:

@PYB11const
def square(self, x="const int"):

"Return the square of the argument"
return "int"

3.3.3 Virtual methods

If we simply wish to expose C++ virtual methods as ordinary class methods in Python (i.e., not allowing overriding
the implementation of such methods from Python), then nothing extra need be done in the method binding for PYB11.
However, in pybind11 it is also possible to expose C++ virtual methods such that they can be overridden from Python
descendants, which is a very powerful capability. Exposing such overridable virtual methods in pybind11 involves
writing an intermediate “trampoline” class as described in the pybind11 documentation Overriding virtual functions
in Python. PYB11Generator automates the generation of such intermediate redundant code (this was in fact the
motivating factor in the creation of PYB11Generator), removing much of the bookkeeping necessary to maintain such
coding in face of a changing interface. In PYB11Generator all that is required for making a virtual method overridable
from Python is decorating such virtual methods with @PYB11virtual/@PYB11pure_virtual as appropriate.
Consider binding the C++ example from the pybind11 documentation Overriding virtual functions in Python:

class Animal {
public:

virtual ~Animal() { }
virtual std::string go(int n_times) = 0;

};

class Dog : public Animal {
public:

virtual std::string go(int n_times) override {
std::string result;
for (int i=0; i<n_times; ++i)

result += "woof! ";
return result;

}
};

3.3. Methods 17

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtuals

PYB11Generator Documentation, Release 2.0

All that is necessary to bind this code using PYB11Generator is the following:

class Animal:

def pyinit(self):
"Default constructor"

@PYB11pure_virtual
def go(self, n_times="int"):

return "std::string"

class Dog(Animal):

def pyinit(self):
"Default constructor"

@PYB11virtual
def go(self, n_times="int"):

return "std::string"

Now both Animal and Dog are accessible from Python, and PYB11Generator automatically generates the necessary
trampoline classes such that the go method can be overridden by descendant Python classes as desired. Note the use
of the PYB11 decorators: PYB11virtual and PYB11pure_virtual. The use of these two should evident from
their names and uses in this example:

• PYB11virtual decorates C++ methods that are virtual (such as Dog::go).

• PYB11pure_virtual decorates C++ methods are pure virtual (such as Animal::go), marking such
classes as abstract.

3.3.4 Protected methods

It is possible to bind protected class methods in pybind11 as described in the pybind11 documentation. In the pybind11
code this requires writing an intermediate C++ class to publish the protected methods. PYB11Generator automates the
production of such publisher classes as needed, however, so all that is required to expose a protected class method is
to decorate the PYB11 binding with @PYB11protected. In order to expose the protected method of the following
example:

class A {
protected:
void some_protected_method(const int x); // A protected method to apply x->A

→˓somehow
}

we simply provide a decorated PYB11 binding as:

class A:

@PYB11protected
def some_protected_method(self, x="int"):

"A protected method to apply x->A somehow"
return "void"

18 Chapter 3. Classes

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#binding-protected-member-functions

PYB11Generator Documentation, Release 2.0

3.3.5 Static methods

Static C++ methods are denoted to PYB11Generator using the @PYB11static decorator as in the following exam-
ple.

C++ class with a static method:

class A {
public:

static int func(int x); // This method does something with x
};

PYB11 binding code:

class A:

@PYB11static
def func(x = "int"):

"This method does something with x"
return "int"

3.4 Special class operators and methods

Python has a number of special methods for classes, such as __len__, __add__, etc., which allow the object
behavior to be controlled for operations such as +, +=, len(), and so forth. pybind11 supports these operators, so
naturally PYB11Generator does as well. In keeping with PYB11Generators interface, these are specified by providing
these special method names in your Python class description.

3.4.1 Numeric operators

The numeric operators supported by PYB11Generator are __add__, __sub__, __mul__, __truediv__,
__floordiv__, __mod__, __and__, __xor__, __or__, __radd__, __rsub__, __rmul__,
__rtruediv__, __rfloordiv__, __rmod__, __rand__, __rxor__, __ror__, __iadd__, __isub__,
__imul__, __itruediv__, __ifloordiv__, __imod__, __iand__, __ixor__, __ior__, __neg__,
and __invert__. Python descriptions of these methods are available here.

In the common case for binary operators where the argument is of the same type as the class we’re binding, we can
omit the the argument specification and return type. However, in the case where the binary operator accepts a different
C++ type, we need to specify this argument type in the usual PYB11 syntax for arguments and return types.

It is also important to remember that Python does not allow us to define a method name more than once in a class,
so if we have overloaded C++ math operators (say operator+ can accept more than one type), we must give each
binding a unique name, but then use decorators such as @PYB11pyname to force the special operator name for the
method.

As an example, consider the following C++ class which supports addition with itself or a double, multiplication by
a double, and the unary negative operator:

class Vector3d {
public:

Vector3d operator-() const;

Vector3d& operator+=(const Vector3d& rhs);
Vector3d operator+ (const Vector3d& rhs) const;

(continues on next page)

3.4. Special class operators and methods 19

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

PYB11Generator Documentation, Release 2.0

(continued from previous page)

Vector3d& operator+=(const double rhs);
Vector3d operator+ (const double rhs) const;

Vector3d& operator*=(const double rhs);
Vector3d operator* (const double rhs) const;

};

We can bind these numeric operations for the Python version of Vector3d with PYB11Generator using normal
Python operator syntax:

class Vector3d:

def __neg__(self):
return

def __iadd__(self):
return

def __add__(self):
return

@PYB11pyname("__iadd__")
def __iadd__double(self, rhs="const double"):

return

@PYB11pyname("__add__")
def __add__double(self, rhs="const double"):

return

def __imul__(self, rhs="const double"):
return "Vector3d&"

def __mul__(self, rhs="const double"):
return "Vector3d"

Note: In some instances it is necessary to explicitly specify how to handle such operator calls. For instance in
the previous example if we needed to provide a multiplication method with a right-hand side type that is not default
constructable, we can explicitly provide the implementation using a C++ lambda function and specify the method is
an operator using the @PYB11operator decorator. In our Vector3d example above for instance this could become:

class Vector3d:

@PYB11implementation("[](const Vector3d& self, const my_nonconstructable_type&) {
→˓return self * my_nonconstructable_type; }")

@PYB11operator
def __mul__(self, rhs="const my_nonconstructable_type&"):

return "Vector3d"

3.4.2 Comparison operators

The comparison operators supported are __lt__, __le__, __eq__, __ne__, __gt__, and __ge__. Usage of
these methods (naturally all binary operators in this case) follow the same pattern as the numeric binary operators.

20 Chapter 3. Classes

https://docs.python.org/3/reference/datamodel.html#object.__lt__

PYB11Generator Documentation, Release 2.0

As an example, suppose our Vector3d class in the previous example also defined comparisons with with either
Vector3d or double:

class Vector3d {
public:

bool operator==(const Vector3d& rhs) const;
bool operator!=(const Vector3d& rhs) const;
bool operator< (const Vector3d& rhs) const;

bool operator==(const double rhs) const;
bool operator!=(const double rhs) const;
bool operator< (const double rhs) const;

};

We can expose these operations to Python similarly to the binary math operators:

class Vector3d:

def __eq__(self):
return

def __ne__(self):
return

def __lt__(self):
return

@PYB11pyname("__eq__")
def __eq__double(self, rhs="const double"):

return "bool"

@PYB11pyname("__ne__")
def __ne__double(self, rhs="const double"):

return "bool"

@PYB11pyname("__lt__")
def __lt__double(self, rhs="const double"):

return "bool"

3.4.3 Functor (call) operator

A special class operator in Python is the __call__ operator (corresponding to the C++ operator() method),
which allows a class to operate like a function. If we have a C++ functor class, we can expose this functor behavior by
binding the C++ operator() call as __call__. As an example, suppose we have C++ functor like the following:

class Transmute {
public:

double operator()(const double x);
};

we can expose this functor nature of Transmute via this sort of PYB11 binding:

class Transmute:

def __call__(self, x="const double"):
return "double"

3.4. Special class operators and methods 21

PYB11Generator Documentation, Release 2.0

PYB11Generator automatically associates __call__ with the C++ method operator(), unless overridden with
something like @PYB11implementation.

3.4.4 Miscellaneous operators

Another pair other useful operators supported are __repr__ and __str__. These are used to create string rep-
resentations of objects for slightly different purposes, as explained in the official Python documentation – essentially
__repr__ should return a string representation of the object such that it could be reconstructed, vs. __str__ which
should produce a human friendly string.

Any function or method that produces such strings is fine to bind to these names (often via renaming
such as @PYB11pyname("__str__")), but a very common pattern is to use lambda functions with the
PYB11implementation() decorator to implement these methods directly in the binding code. As one exam-
ple, we might bind useful versions of these operators for the example C++ class Vector3d above as:

class Vector3d:

@PYB11implementation("[](const Vector3d& self) -> std::string { return "[" + self.
→˓x + ", " + self.y + ", " + self.z + "]" }")

def __repr__(self):
return "std::string"

@PYB11implementation("[](const Vector3d& self) -> std::string { return "Vector3d(
→˓" + self.x + " " + self.y + " " + self.z + ")" }")

def __str__(self):
return "std::string"

3.4.5 Sequence methods

Probably the first thing to point out here is this section is not necessary for handling STL containers: pybind11 has
built-in support for Binding STL containers, which PYB11Generator provides convenient wrappers for. In fact, so
long as implicit copying of STL containers through the Python-C++ interface is acceptable, nothing need be done with
STL containers at all – they will automatically be handled by pybind11 transparently.

Binding the Python sequence methods for your own C++ types can at times be a complicated process, and there
is not necessarily a single solution that fits all cases. There are several methods in Python you can override to
provide sequence information: __len__, __getitem__, __setitem__, __getslice__, __setslice__,
__iter__, etc. PYB11Generator allows all these methods to be used via pybind11, but it definitely behooves the
interested user to thoroughly understand the pybind11 and Python documentation on this subject. It will often require
writing some lightweight interstitial code to translate C++ container information to Python and back, for which lambda
functions and the PYB11implementation() decorator are handy.

As the bare beginning of an example, here is a version of one of the pybind11 test C++ sequence classes (stripped to
just the interface) drawn from the pybind11/tests/test_sequences_and_iterators.cpp test code:

class Sequence {
public:

Sequence(size_t size);
Sequence(const std::vector<float> &value);
Sequence(const Sequence &s);

bool operator==(const Sequence &s) const;
bool operator!=(const Sequence &s) const;

float operator[](size_t index) const;
(continues on next page)

22 Chapter 3. Classes

https://docs.python.org/3/reference/datamodel.html#object.__repr__
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://docs.python.org/3/reference/datamodel.html#emulating-container-types
https://pybind11.readthedocs.io/en/stable/advanced/misc.html#binding-sequence-data-types-iterators-the-slicing-protocol-etc
https://docs.python.org/3/reference/datamodel.html#emulating-container-types

PYB11Generator Documentation, Release 2.0

(continued from previous page)

float &operator[](size_t index);

bool contains(float v) const;

Sequence reversed() const;

size_t size() const;

const float *begin() const;
const float *end() const;

};

and here is an example binding for these methods translated from the pybind11 test code in pybind11/tests/
test_sequences_and_iterators.cpp to PYB11Generator Python syntax:

class Sequence:

def pyinit0(self, size="size_t"):
return

def pyinit1(self, value="const std::vector<float>&"):
return

def pyinit2(self, s="const Sequence&"):
return

def __eq__(self):
return

def __ne__(self):
return

Sequence methods
@PYB11cppname("size")
def __len__(self):

return "size_t"

@PYB11implementation("[](const Sequence &s, size_t i) { if (i >= s.size()) throw
→˓py::index_error(); return s[i]; }")

def __getitem__(self, i="size_t"):
return "float"

@PYB11implementation("[](Sequence &s, size_t i, float v) { if (i >= s.size())
→˓throw py::index_error(); s[i] = v; }")

def __setitem__(self, i="size_t", v="float"):
return "void"

Optional sequence methods
@PYB11keepalive(0, 1) # Essential: keep object alive while iterator exists
@PYB11implementation("[](const Sequence &s) { return py::make_iterator(s.begin(),

→˓s.end()); }")
def __iter__(self):

return "py::iterator"

@PYB11cppname("contains")
@PYB11const
def __contains__(self, v="float"):

return "bool"

(continues on next page)

3.4. Special class operators and methods 23

PYB11Generator Documentation, Release 2.0

(continued from previous page)

@PYB11cppname("reversed")
@PYB11const
def __reversed__(self):

return "Sequence"

Slicing protocol
@PYB11pyname("__getitem__")
@PYB11implementation("""[](const Sequence &s, py::slice slice) -> Sequence* {

size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &

→˓slicelength)) throw py::error_already_set();
Sequence *seq = new Sequence(slicelength);
for (size_t i = 0; i < slicelength; ++i) {
(*seq)[i] = s[start]; start += step;

}
return seq;

}""")
def __getitem__slice(self, slice="py::slice"):

return "Sequence*"

@PYB11pyname("__setitem__")
@PYB11implementation("""[](Sequence &s, py::slice slice, const Sequence &value) {

size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &

→˓slicelength))
throw py::error_already_set();

if (slicelength != value.size())
throw std::runtime_error("Left and right hand size of

→˓slice assignment have different sizes!");
for (size_t i = 0; i < slicelength; ++i) {

s[start] = value[i]; start += step;
}"""

}""")
def __getitem__slice(self, slice="py::slice", value="const Sequence&"):

return "void"

This rather in-depth example uses a few concepts not introduced yet (such as @PYB11keepalive) which are dis-
cussed later, but hopefully gives a flavor of what is needed. Mapping types are also supported through the same sort
of overriding of built-in Python methods analogous to above.

3.5 Templated methods

Templated methods are handled in a very similar manner to C++ template functions. Suppose we want to bind the
templated method in the following C++ class:

class A {
public:

template<typename ValueA, typename ValueB, typename ValueC>
ValueC
transmogrify(const ValueA& x, const ValueB& y);

};

In order to bind this method we first create a python class method and decorate it with @PYB11template

24 Chapter 3. Classes

PYB11Generator Documentation, Release 2.0

and the template types as strings. We then create however many instantiations of this method as we like using
PYB11TemplateMethod():

class A:

@PYB11template("ValueA", "ValueB", "ValueC")
def transmogrify(self, x="%(ValueA)s", y="%(ValueB)s"):

"I'm sure this does something useful..."
return "%(ValueC)s"

transmogrifyIntIntDouble = PYB11TemplateMethod(transmogrify, ("int", "int",
→˓"double"), pyname="transmogrify")

transmogrifyI32I32I64 = PYB11TemplateMethod(transmogrify, ("uint32_t", "uint32_
→˓t", "uint64_t"), pyname="transmogrify")

Comparing this with the example in C++ template functions, we see that handling template class methods is
nearly identical to template functions. The only real difference is we instantiate the template class method using
PYB11TemplateMethod (assigned to class attributes) instead of PYB11TemplateFunction.

3.6 Attributes

C++ structs and classes can have attributes, such as:

struct A {
double x; // An ordinary attribute
const double y; // A readonly attribute
static double xstatic; // A static attribute

};

Attributes in pybind11 are discussed in Instance and static fields; PYB11Generator exposes these kinds of attributes
via the special PYB11 types PYB1readwrite and PYB11readonly. We can expose the attributes of A in this
case via PYB11Generator using:

class A:
x = PYB11readwrite(doc="An ordinary attribute")
y = PYB11readonly(doc="A readonly attribute")
xstatic = PYB11readwrite(static=True, doc="A static attribute")

In this example we have used the optional arguments doc to add document strings to our attributes, and static
to indicate a static attribute – for the full set of options to these functions see PYB11readwrite() and
PYB11readonly().

3.7 Properties

A related concept to attributes is class properties, where we use getter and setter methods for data of classes as though
they were attributes. Consider the following C++ class definition:

class A {
public:
double getx() const; // Getter for a double named "x"
void setx(double val); // Setter for a double named "x"

};

There are at least two ways we can go about creating A.x as a property.

3.6. Attributes 25

https://pybind11.readthedocs.io/en/stable/classes.html#properties

PYB11Generator Documentation, Release 2.0

3.7.1 Option 1: use PYB11property

The most convenient method (or at least most succinct) to treat A.x as a property is via the PYB11property helper
type. In this example we could simply write:

class A:
x = PYB11property(getter="getx", settter="setx",

doc="Some helpful description of x for this class")

This minimal example demonstrates that using PYB11property we can expose properties in a single line like this
– see full description of PYB11property().

3.7.2 Option 2: use an ordinary python property definition

Python has native support for properties via the built-in property(); PYB11Generator is able to interpret use of
this function to define pybind11 properties as well. We can use this method to create A.x as follows:

class A:

def getx(self):
return

def setx(self):
return

x = property(getx, setx, doc="Some helpful description of x for this class")

This method has the advantage we are using all ordinary python constructs, which PYB11Generator is able to parse
and create the property as desired.

Note: In this second example we have also exposed the getx and setx methods to be bound in pybind11. If
this is not desired, we can decorate these methods with @PYB11ignore, allowing these methods to be used in the
property() definition while preventing them from being directly exposed themselves.

3.8 Dynamic attributes

By default pybind11 classes are immutable from Python, so it is an error to try and insert new attributes to an instance
of a pybind11 bound C++ class. This is different than default behavior in Python however, which allows instances of
classes to be modified with new attributes. For example, the following is legal Python code:

>>> class Strongbadia:
... headOfState = "Strong Bad"
...
>>> country = Strongbadia()
>>> country.population = "Tire" # Valid, we just dynamically added a new attribute

pybind11 allows us to specify if we want classes to be modifiable in this way (see pybind11 docs), which is reflected
in PYB11Generator by using the decorator @PYB11dynamic_attr. So if we wanted to modify one of our class
bindings for A above to allow dynamic attributes, we can simply decorate the class declaration like:

26 Chapter 3. Classes

https://pybind11.readthedocs.io/en/stable/classes.html#dynamic-attributes

PYB11Generator Documentation, Release 2.0

@PYB11dynamic_attr
class A:
...

3.9 Singletons

Suppose we have declared a C++ class to be a singleton object (i.e., declared all constructors and destructors private)
like so:

class Asingleton {
public:

static A* instance() { return instanceptr; }

private:
static A* instanceptr;
A();
A(const A&);
A& operator=(const A&);
~A();

};

pybind11 (via its use of std::unique_ptr to hold Python instances) assumes bound objects are destructible, but
for singletons such as Asingleton above the destructor is private. We must notify pybind11 that singletons such as
this are different (as discussed in pybind11 for Non-public destructors) – PYB11Generator accomplishes this via the
decorator @PYB11singleton like so:

@PYB11singleton
class Asingleton:

@PYB11static
@PYB11returnpolicy("reference")
def instance(self):

return "Asingleton*"

This example also involves setting a policy for handling the memory of the Asingleton* returned by A.
instance: these sorts of memory management details are discussed in Return value policies.

3.10 Templated classes

PYB11 handles C++ class templates similarly to C++ template functions: first, we decorate a class definition with
@PYB11template, which takes an arbitrary number of string arguments representing the template parameters; sec-
ond, we use the PYB11TemplateClass() function to create instantiations of the template class. Consider a C++
template class definition:

template<typename Scalar>
class Vector {
public:

Scalar x, y, z; // Coordinate attributes

Vector(Scalar x, Scalar y, Scalar z); // Constructor
Scalar magnitude() const; // Compute the magnitude (norm)

};

3.9. Singletons 27

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#classes-with-non-public-destructors

PYB11Generator Documentation, Release 2.0

We can create PYB11Generator instantiations of this class for double and float types using:

@PYB11template("Scalar")
class Vector:

"A simple three-dimensional Vector type using %(Scalar)s coordinates"

x = PYB11readwrite()
y = PYB11readwrite()
z = PYB11readwrite()

def pyinit(self, x="%(Scalar)s", y="%(Scalar)s", z="%(Scalar)s"):
"Construct with specified coordinates"

@PYB11const
def magnitude(self):

"Compute the magnitude (norm)"
return "%(Scalar)s"

FloatVector = PYB11TemplateClass(Vector, template_parameters="float")
DoubleVector = PYB11TemplateClass(Vector, template_parameters="double")

Just as is the case with template functions, classes decorated with @PYB11template are implicitly ignored by
PYB11Generator until an instantiation is created with PYB11TemplateClass(). Additionally, template parame-
ters specified in @PYB11template become named patterns which can be substituted with the types used to instan-
tiate the templates. So, in the Vector example above, %(Scalar)s becomes float in the first instantiation and
double in the second. See PYB11template() and PYB11TemplateClass() for further details.

Complications can arise with inheritance of templated classes, particularly if the template parameters change between
the base and descendant types. See the discussion in Non-templated class inheriting from a templated class and
Templated class inheritance with template parameter changes for further details.

28 Chapter 3. Classes

CHAPTER 4

Enums

C++ enums are handled in a fairly straightforward manner as discussed in the pybind11 docs. Suppose we have the
following enum in C++:

// A collection of adorable rodents
enum Rodents {

mouse = 0,
rat = 1,
squirrel = 2,
hamster = 3,
gerbil = 4,
capybara = 5

};

PYB11 uses the special method PYB11enum to declare enums, directly corresponding to the pybind11 construct
py::enum_. We can bind our enumeration of Rodents using:

Rodents = PYB11enum(("mouse", "rat", "squirrel", "hamster", "gerbil", "capybara"),
doc="A collection of adorable rodents")

See PYB11enum() for the full set of options to PYB11enum.

It is also straightforward to declare an enum type that is inside a class scope; if we have a C++ class with an enum like
the following:

class Homestararmy {
public:

enum members {
HomestarRunner = 0,
StrongSad = 1,
Homsar = 2,
PaintingOfGuyWithBigKnife = 3,
FrankBennedetto = 4,

};
};

29

https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types

PYB11Generator Documentation, Release 2.0

We can bind this enum using PYB11Generator with:

class Homestararmy:

members = PYB11enum(("HomestarRunner", "StrongSad", "Homsar",
→˓"PaintingOfGuyWithBigKnife", "FrankBennedetto"))

30 Chapter 4. Enums

CHAPTER 5

Memory management

Generally memory management “just works” when binding C++ and Python with pybind11 without worrying about
how the memory/lifetime of the objects is handled. However, since C++ allows memory and objects to be allo-
cated/deallocated in a variety of ways, at times it is necessary to pay attention to this issue. In this section we discuss
the pybind11 methods of handling memory and object lifetimes PYB11Generator provides wrappers for. In order to
understand this section it is advisable to read the pybind11 documentation on the use of smart pointers, pybind11
Return value policies, and Additional call policies.

5.1 Class holder types

When pybind11 creates a new instance of a bound C++ class, it uses a smart pointer type to hold and manage that
instance. The default type used by pybind11 for this purpose is std::unique_ptr, which means new objects cre-
ated in this manner by Python will be deallocated when their reference count goes to zero. In most circumstances this
is fine, but some C++ applications may have a smart pointer type they already are working with. In such cases it might
be preferable to make pybind11 manage these object using the same sort of smart pointer. In PYB11 we specify this
by decorating class declarations with @PYB11holder. For instance, to make pybind11 use std::shared_ptr
to hold a class type A:

@PYB11holder("std::shared_ptr")
class A:

def pyinit(self):
"Default constructor"

This tells pybind11 any new instance of A created from python should be managed by std::shared_ptr. py-
bind11 supports std::unique_ptr and std::shared_ptr without further work. It is possible to use any ref-
erence counting smart pointer for this purpose, but types other than std::unique_ptr and std::shared_ptr
require more information be specified to pybind11. PYB11 does not provide any convenience methods for adding that
additional information, but it can be done directly with pybind11 as described in the pybind11 documentation.

Note: Overriding the holder smart pointer type can result in subtleties that lead to hard to understand memory errors.

31

https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#smart-pointers
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies
https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers

PYB11Generator Documentation, Release 2.0

If using this capability, read the pybind11 description carefully!

5.2 Return value policies

Return value policies are important but at times tricky for C++ types returned by reference or pointer. By default
pybind11 assumes Python will take ownership of returned values, implying Python can delete those objects when
the Python reference count falls to zero. If a C++ library returns a pointer to memory it expects to manage, how-
ever, the result of this conflict over who can manage (delete) that memory is an error. For this reason pybind11
provides Return value policies, allowing the developer to explicitly state how memory returned from C++ should
be handled. Before using these policies it is critical to read and understand these policies from pybind11. These
return value policies are applied (for functions or methods) using the @PYB11returnpolicy decorator, with
allowed values take_ownership, copy, move, reference, reference_internal, automatic, and
automatic_reference. The default policy is automatic.

Consider the example C++ function from the pybind11 documentation:

/* Function declaration */
Data *get_data() { return _data; /* (pointer to a static data structure) */ }

If we want to tell pybind11 the C++ side will manage the memory for the returned Data* from this method, the
reference return policy is appropriate. We can express this by decorating the function binding as:

@PYB11returnpolicy("reference")
def get_data():

return "Data*"

Decorating return values from class methods is identical to functions: simply use @PYB11returnpolicy to deco-
rate the method declaration.

5.3 Call policies

While Return value policies are specific to return types from functions or methods, call policies allow the user to tie
together the lifetimes of return values and/or arguments. This is discussed in depth in the pybind11 documentation Ad-
ditional call policies. PYB11 provides the decorator @PYB11keepalive(a, b) for direct access to the pybind11
command py::keep_alive<a, b>. The arguments to the decorator a and b are integers indicating arguments in
the call signature by position index, with the convention:

• 0 denotes the return value of the function/method.

• If decorating a class method, index 1 is the this (or self) pointer.

To recreate the example from the pybind11 documentation, if we have a custom List class which we are binding in
Python, we might want to decorate the append method like:

class List:

@PYB11keepalive(1, 2)
def append(self, x):

return "void"

This tells pybind11 to keep the the second argument (x, the element being appended) alive so long as the first argument
(self, our container class) is alive.

32 Chapter 5. Memory management

https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#std-shared-ptr
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies

PYB11Generator Documentation, Release 2.0

5.4 Call guards

Another variation on wrapping functions/methods is to provide call_guard as discussed in the pybind11 call_guard
documentation. Call guards must be default constructable C++ types, and will be built in scope just before calling the
wrapped method. One typical usage would be to release the Python Global Interpreter Lock (GIL) before calling a
wrapped method, so something like:

@PYB11call_guard("py::gil_scoped_release")
def my_wrapped_method():

"Some C++ method that needs to have the GIL released."
return

5.4. Call guards 33

https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard

PYB11Generator Documentation, Release 2.0

34 Chapter 5. Memory management

CHAPTER 6

STL containers

In many cases STL containers (such as vector, deque, map, etc.) can be used transparently with pybind11: python
lists will automatically convert to std::vector and vice versa for example with no extra work or notation needed.
The main caveat to this convenience, however, is that this is accomplished by copying the data in the container,
which has two potential drawbacks: for large containers this may not be practical; second, any attempt to change
data on either the C++ or Python side will be lost due to the fact you would be operating on a copy. Even if your
function/method specification is passing STL containers by reference, this silent copying will make modifying them
across the Python/C++ interface impossible without further work.

If you need to pass an STL container without all this magic copying, it becomes necessary to directly bind such
containers and define the behavior you want. PYB11Generator provides some interfaces to pybind11’s machinery for
such bindings, but it is essential to first read and understand what pybind11 is doing for STL types.

PYB11Generator currently only provides Python convenience methods for handling two STL containers:
std::vector via PYB11_bind_vector(), and std::map with PYB11_bind_map(). It is possible to use
the pybind11 semantics directly in C++ in combination with PYB11Generator to handle cases beyond std::vector
and std::map of course, it simply involves using the pybind11 C++ interface directly.

6.1 std::vector

Suppose we want to bind std::vector<int> and std::vector<Aclass> in our module such that they will
be modifiable through the interface (no copying). We can accomplish this by adding two lines to our Python module
definition:

vector_of_int = PYB11_bind_vector("int", opaque=True)
vector_of_Aclass = PYB11_bind_vector("Aclass", opaque=True)

When we import the resulting compiled module it will now include the types vector_of_int and
vector_of_Aclass explicitly, and we need to deal in those types rather than the more convenient Python lists
for arguments of those types. The opaque argument here is what makes pybind11 treat these vector’s as mutable
references through the Python/C++ interface. We also have the option of making these bindings local to the module
or global: see PYB11_bind_vector() for the full description.

35

https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-containers
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-containers

PYB11Generator Documentation, Release 2.0

6.2 std::map

Making std::map instances mutable through the Python/C++ interface (opaque as described in pybind11 terms)
is similar to our treatment of std::vector. If in our module we need to use std::map<std::string,
Aclass> as an opaque argument we simply add a line:

map_of_int_to_Aclass = PYB11_bind_map("int", "Aclass", opaque=True)

Just as in our prior std::vector examples, our module will now include a type map_of_int_to_Aclass
which we can use explicitly to pass this container between Python and C++ mutably.

36 Chapter 6. STL containers

CHAPTER 7

Complications and corner cases

7.1 Cross-module inheritance

For the most part having C++ types exposed in different modules is transparent: so long as you import all the necessary
modules once they are all compiled and bound, everything just works. However, the exception to this rule is if you
want to bind a class in one module that inherits from a class bound in another. Suppose for instance we have two C++
classes (A and B), defined in two different headers A.hh and B.hh, as follows.

A.hh:

struct A {
A() { printf("A::A()\n"); }
virtual ~A() { printf("A::~A()\n"); }
virtual int func(const int x) { printf("A::func(%d)\n", x); return x; }

};

B.hh:

#include "A.hh"

struct B: public A {
B(): A() { printf("B::B()\n"); }
virtual ~B() { printf("B::~B()\n"); }
virtual int func(const int x) override { printf("B::func(%d)\n", x); return x*x; }

};

We want to expose these two class in two different modules, Amodule and Bmodule. We will now need to annotate
the bindings for the A class with one piece of new information – the module it will be bound in. This is accomplished
with a new decorator: PYB11module, and the bindings for Amodule might look like:

from PYB11Generator import *

PYB11includes = ['"A.hh"']

(continues on next page)

37

PYB11Generator Documentation, Release 2.0

(continued from previous page)

@PYB11module("Amodule") # <--- This is our new annotation
class A:

def pyinit(self):
"Default constructor"

@PYB11virtual
def func(self, x="int"):

"A::func"
return "int"

Let’s suppose the above binding source is stored in file Amodule_bindings.py. We can now write our binding
source for Bmodule as normal, but we need to import Amodule_bindings so we can express the inheritance
relation between B and A:

from PYB11Generator import *

import Amodule_bindings

PYB11includes = ['"B.hh"']

class B(Amodule_bindings.A):

def pyinit(self):
"Default constructor"

@PYB11virtual
def func(self, x="int"):

"B::func"
return "int"

The @PYB11module decoration on A tells PYB11Generator how to generate the pybind11 code to correctly import
A rather than generate A locally, as described in the pybind11 documentation.

Note: It is critical here in the bindings for Bmodule that we use import Amodule_bindings, and do not
import A into the local scope using from Amodule_bindings import A! If we put A in the top-level scope
of our bindings for B, the binding code for A will be generated redundantly in the new bindings, and cause a conflict
when we try to import the two modules together.

7.2 Non-templated class inheriting from a templated class

PYB11Generator needs to know template parameters for templated classes in order to create concrete instantiations,
but since Python does not have the concept of templates we have adopted a two-stage process for creating template
class instantiations in PYB11 as described in Templated classes. However, if we have a non-templated class which in-
herits from a templated base, there is no longer the second-stage of this procedure using PYB11TemplateClass()
to instantiate the base with the proper template parameters.

It is possible to handle this situation, but it requires two decorations be applied to the non-templated descendant:

1. Because the descendant will inherit the template decoration of the base class, we must explicitly state that the
descendant has no template parameters with @PYB11template().

38 Chapter 7. Complications and corner cases

https://pybind11.readthedocs.io/en/stable/advanced/misc.html#partitioning-code-over-multiple-extension-modules

PYB11Generator Documentation, Release 2.0

2. We still need to specify what template parameters should be used for the base class. Template param-
eters in PYB11Generator are specified using python dictionary matching, so we can directly insert the
proper template parameter choices in the appropriate dictionary for our non-templated descendant using
@PYB11template_dict.

These two steps are best demonstrated by an example – consider the following C++ class hierarchy:

template<typename Value1, typename Value2>
class A {
public:

A();
virtual ~A();
virtual std::string func(const Value1& x, const Value2& y) const;

};

class B: public A<double, int> {
public:

B();
virtual ~B();
virtual std::string func(const double& x, const int& y) const;

};

PYB11Generator can represent this hierarchy with:

@PYB11template("Value1", "Value2")
class A:

def pyinit(self):
"Default A()"

@PYB11virtual
@PYB11const
def func(self, x="const %(Value1)s&", y="const %(Value2)s&"):

"Default A::func"
return "std::string"

@PYB11template() # <--- force not to
→˓inherit template parameters from A
@PYB11template_dict({"Value1" : "double", "Value2" : "int"}) # <--- specify the
→˓template parameter substitutions
class B(A):

def pyinit(self):
"Default B()"

@PYB11virtual
@PYB11const
def func(self, x="const double&", y="const int&"):

"B::func override"
return "std::string"

We still need to instantiate any versions of A that we need/use.
A_double_int = PYB11TemplateClass(A, template_parameters=("double", "int"))

7.2. Non-templated class inheriting from a templated class 39

PYB11Generator Documentation, Release 2.0

7.3 Templated class inheritance with template parameter changes

Another variation on the above is the templated class inheritance where the template parameters are changed between
the base and descendant types. For example, consider the following class hierarchy:

template<typename Value1, typename Value2>
class A {
...
};

template<typename Value2, typename Value3>
class B: public A<unsigned, Value2> {
...
};

In this case the descendant B class inherits from A, but specializes one of the template arguments to unsigned.
Binding instantiations of A is straightforward using the methods described in Templated classes, but how should we
create instantiations of B? The solution here is to use PYB11template_dict as above to specify the Value1
template parameter for B:

@PYB11template("Value2", "Value3")
@PYB11template_dict({"Value1" : "unsigned"})
class B(A):

...

B_double_int = PYB11TemplateClass(B, template_parameters=("double", "int")

40 Chapter 7. Complications and corner cases

CHAPTER 8

Using CMake to build PYB11Generator modules

pybind11 provides excellent support for building python modules using CMake, as is documented on pybind11
readthedocs page. PYB11Generator provides a thin wrapper around this capability to simplify generating
PYB11Generator Python extensions as well, such that PYB11Generator modules can be compiled with just a few
lines of CMake code. Suppose we have a simple function in a file example_functions.hh:

int add(int i, int j) {
return i + j;

}

int subtract(int i, int j) {
return i - j;

}

and we write PYB11Generator bindings for these functions in the file example_PYB11.py:

"""
Simple example function performing sums in C++
"""

PYB11includes = ['"example_functions.hh"']

def add(i = "int", j = "int"):
"Add two integers"
return "int"

def subtract(i = "int", j = "int"):
"Subtract two integers"
return "int"

If we have added PYB11Generator as a submodule of our project (say in the directory extern/PYB11Generator),
we can write a CMake CMakeLists.txt file to compile this example in just a few lines of code:

project(example LANGUAGES CXX)

(continues on next page)

41

https://cmake.org/
https://pybind11.readthedocs.io/en/stable/compiling.html#building-with-cmake
https://pybind11.readthedocs.io/en/stable/compiling.html#building-with-cmake

PYB11Generator Documentation, Release 2.0

(continued from previous page)

set(PYB11GENERATOR_ROOT_DIR ${CMAKE_SOURCE_DIR}/extern/PYB11Generator) # <--
→˓Required to set PYB11GENERATOR_ROOT_DIR
include(${PYB11GENERATOR_ROOT_DIR}/cmake/PYB11Generator.cmake) # <-- include
→˓the PYB11Generator CMake functions
PYB11Generator_add_module(example)

This will generate the build necessary to compile a Python extension example from the PYB11Generator source
example_PYB11.py. The CMake function PYB11Generator_add_module is the new CMake function which
automatically calls PYB11Generator on the Python code stored in example_PYB11.py to generate the C++ py-
bind11 code, and then compiles and links that code to a functioning Python module.

Some CMake variables that influence PYB11Generator_add_module are:

PYB11GENERATOR_ROOT_DIR (required) : Top-level directory for PYB11Generator installation

PYBDIND11_ROOT_DIR (optional) : Location of the pybind11 install. Defaults to
${PYB11GENERATOR_ROOT_DIR}/extern/pybind11.

PYTHON_EXE (optional) : Python executable if not set, we use CMake’s find_package to search for Python3

The full function specification for PYB11Generator_add_module is:

PYB11Generator_add_module(<target_name>
MODULE ...
SOURCE ...
INSTALL ...
INCLUDES ...
LINKS ...
DEPENDS ...
PYBIND11_OPTIONS ...)

where the arguments are:

<target_name> (required) : Name of the CMake target to be created.

MODULE <arg> (optional) : Name of the Python module to be generated. Defaults to <target_name>.

SOURCE <arg> (optional) : Optionally specify the name of the Python source file containing the PYB11Generator
bindings. If not specified, defaults to <target_name>_PYB11.py.

INSTALL <arg> (optional) : Path to install extension module – defaults to ${Python3_SITEARCH}/
${target_name}.

INCLUDES <arg1> <arg2> . . . (optional) : List of addition includes needed to compile the extension module. Note
all standard Python include paths are included by default.

LINKS <arg1> <arg2> . . . (optional) : List of addition linking libraries, targets, or flags necessary to link the ex-
tension module.

DEPENDS <arg1> <arg2> . . . (optional) : List of targets the extension module depends on, i.e., targets that should
be satisfied first.

PYBIND11_OPTIONS <arg1> <arg2> . . . (optional) : Any valid flags that can be passed to the built-in pybind11
pybind11_add_module CMake function. See pybind11 CMake documentation.

Note: PYB11Generator_add_module only looks at the SOURCE Python file (default
<target_name>_PYB11.py. However, that file may in turn import as many other Python files as desired
to expose more interface as part of the module, so the user should feel free to organize their PYB11Generator bindings

42 Chapter 8. Using CMake to build PYB11Generator modules

https://pybind11.readthedocs.io/en/stable/compiling.html#building-with-cmake

PYB11Generator Documentation, Release 2.0

as desired for clarity. A typical pattern would be to have the top-level module <target_name>_PYB11.py import
individual class bindings from separate Python files for each bound class, for instance.

43

PYB11Generator Documentation, Release 2.0

44 Chapter 8. Using CMake to build PYB11Generator modules

CHAPTER 9

PYB11 reserved variables

For the most part Python variables declared in module bindings are ignored by PYB11Generator. There are a few
exceptions to this rule though – some variables are used to communicate information to PYB11Generator as described
below.

PYB11includes = [. . .] A list of strings, each of which represents a file that should be #include-ed in the final C++
generated file. For instance, if we needed the C++ to have the following include statements:

#include "A.hh"
#include <vector>

We would put this in our file for PYB11Generator:

PYB11includes = ['"A.hh"', '<vector>']

PYB11namespaces = [. . .] A list of strings for C++ namespaces we wish to use in the generated C++ – as an example,
the following statement:

PYB11namespaces = ["extreme", "measures"]

results in the following in the generated pybind11 C++ source:

using namespace extreme;
using namespace measures;

PYB11scopenames = [. . .] A list of C++ types we want to directly declare with use (more focused than importing
an entire namespace). In order to decare we want to use std::vector and MyNameSpace::A, we could
use:

PYB11scopenames = ["std::vector", "MyNameSpace::A"]

which simply inserts the following in the generated C++:

using std::vector
using MyNameSpace::A

45

PYB11Generator Documentation, Release 2.0

PYB11preamble = “. . . ” PYB11preamble is used to specify a string of arbitrary C++ code that will be inserted near
the top of the generated pybind11 source file. PYB11preamble is a bit of catch-all, we could for instance
directly perform the tasks of PYB11includes and PYB11namespace using PYB11preamble by simply
typing the final C++ code in here. One typical usage of this preamble variable is to insert small inline utility
methods directly in the final C++ code. For instance, if we had need of a simple function we want to use in the
subsequent bindings, we could do something like:

PYB11preamble = """
namespace JustForBindings {
inline int square(int x) { return x*x; }

}"""

and now our generated code will include this function.

PYB11modulepreamble = “. . . ” PYB11modulepreamble is used to specify a string of arbitrary C++ code that will
be inserted following the PYBIND11_MODULE statement, so inside module scope. A typical use of this variable
is to insert macros such as PYBIND11_NUMPY_DTYPE(...)`, for native support of user defined types with
Numpy.

PYB11opaque = [. . .] A list of C++ types we want to be treated as opaque: typically STL types declared as opaque
and global in another module. See STL containers for further information. As an example, to declare that
std::vector<int> and std::vector<std::string> are declared as opaque in another module:

PYB11opaque = ["std::vector<int>", "std::vector<std::string>"]

which results in the following inserted into the generated C++:

PYBIND11_MAKE_OPAQUE(std::vector<int>)
PYBIND11_MAKE_OPAQUE(std::vector<std::string>)

Note all of these reserved variables affect the start of the generated pybind11 C++ code, coming before any of the
function, class, module, or other pybind11 declarations that are subsequently generated. The order that these meth-
ods are executed in is the same as they are listed above: first any PYB11includes, then PYB11namespaces,
PYB11scopenames, PYB11preamble, and finally PYB11opaque. If we were to include all of the above exam-
ples (in any order) in a single source code for instance like so:

PYB11includes = ['"A.hh"', '<vector>']
PYB11namespaces = ["extreme", "measures"]
PYB11scopenames = ["std::vector", "MyNameSpace::A"]
PYB11preamble = """
namespace JustForBindings {

inline int square(int x) { return x*x; }
}
"""
PYB11opaque = ["std::vector<int>", "std::vector<std::string>"]

the generated pybind11 code would look like:

...
#include "A.hh"
#include <vector>

using namespace extreme;
using namespace measures;

using std::vector
using MyNameSpace::A

(continues on next page)

46 Chapter 9. PYB11 reserved variables

PYB11Generator Documentation, Release 2.0

(continued from previous page)

namespace JustForBindings {
inline int square(int x) { return x*x; }

}

PYBIND11_MAKE_OPAQUE(std::vector<int>)
PYBIND11_MAKE_OPAQUE(std::vector<std::string>)

//--
// Make the module
//--
...

9.1 PYB11 variables for classes

There is also one reserved variable for class scope in PYB11:

PYB11typedefs = “. . . .” A string of C++ to be inserted at the beginning of a class declaration. This is a bit of a
misnomer; the string can be any valid C++ for use in the class declaration scope. Suppose for instance we are
defining a class A, and we want to declare some typedefs only for use in the scope of A:

class A:

PYB11typedefs = """
typedef int IntType;
typedef double ScalarType;
"""

which results in the following C++ code:

//..
// Class A
{

typedef int IntType;
typedef double ScalarType;

class_<A> obj(m, "A");
...

}

so now IntType and ScalarType are avaiable as types in the scope where we are defining A.

9.1. PYB11 variables for classes 47

PYB11Generator Documentation, Release 2.0

48 Chapter 9. PYB11 reserved variables

CHAPTER 10

PYB11 decorators

@PYB11ignore
Specifies that the decorated object should be ignored by PYB11Generator, i.e., not processed to produce any
pybind11 binding output.

@PYB11template("type1", "type2", ...)
Indicates the object should be treated as a C++ template. Accepts any number of strings which represent the
names of the template arguments.

The succeeding python class or function can use the specified template argument strings as patterns for substi-
tation with python dictionary string replacement. So if we are binding a C++ templated function:

template<typename T>
T manipulate(const T& val);

The corresponding PYB11 template specfication would look like:

@PYB11template("T")
def manipulate(val = "const %(T)s"):

return "%(T)s"

@PYB11template_dict
Explicitly specifies the dictionary of template args to values for use with @PYB11template types.

NOTE: this is a highly unusual pattern to need/use. It is preferable to use the ordinary PYB11 template instantion
methods PYB11TemplateClass, PYB11TemplateMethod, or PYB11TemplateFunction.

@PYB11singleton
Specifies that the decorated object should be treated as a C++ singleton.

@PYB11holder(holder_type)
Specify a special C++ holder for the generated type in pybind, rather than the usual default
std::unique_ptr. See pybind11 documentation on using shared_ptr as a holder type.

@PYB11dynamic_attr
Make the wrapped class modifiable, i.e., allow attributes to be added dynamically to an instance of the class in
python. See pybind11 documentation about dynamic attributes.

49

https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#std-shared-ptr
https://pybind11.readthedocs.io/en/stable/classes.html?highlight=dynamic_attr#dynamic-attributes

PYB11Generator Documentation, Release 2.0

@PYB11namespace("val")
Set the namespace the C++ type should be found in.

@PYB11cppname("val")
Give a value for the C++ name of the decorated function, class, or method. Overrides the default assumption
that the C++ name is the same as that given for the object in the PYB11 python binding file.

@PYB11pycppname("val")
Simultaneously set the Python and C++ name of the decorated function, class, or method. Shorthand for speci-
fying both @PYB11pyname and @PYB11cppname to the given "val".

@PYB11virtual
Mark a class method as virtual.

@PYB11pure_virtual
Mark a class method as pure virtual, making the class abstract.

@PYB11protected
Mark a class method as protected.

@PYB11const
Mark a class method as const.

@PYB11static
Mark a class method as static.

@PYB11operator
Mark a class method as an operator. See ‘pybind11 discussion of py::is_operator in the discussion of opera-
tor overloading<https://pybind11.readthedocs.io/en/stable/advanced/classes.html?highlight=is_operator#operator-
overloading>‘_.

@PYB11noconvert
Applies py::noconvert to all the arguments of a method to prevent automatic conversion. See pybind11
discussion of py::.

@PYB11implementation("val")
Give an implementation for the bound function or method. This is typically used to specify lambda function
implementations, or explicitly call a helper method.

@PYB11returnpolicy("val")
Specify a pybind11 return policy for the return value of a function or method. This is a tricky topic that if
misused can create memory errors, but is at times absolutely necessary to get the expected behavior from the
underlying C++ code and types. Before using this method carefully read the pybind11 discussion about Return
value policies.

@PYB11keepalive(a, b)
Tie the lifetime of objects in the return value/argument spec together, where the arguments (a, b) are integers
indicating the order of the arguments to tie together (0 refers to the return value). This is another way of spec-
ifying memory policies, similar to returnpolicy. Carefully read the pybind11 discussion of the keep_alive
directive in Additional call policies.

@PYB11call_guard("val")
Specify a pybind11 call_guard for a function or method. See the discussion of pybind11:call_policies for
examples of call_guards.

@PYB11module("val")
Indicate the object should be imported from the specified python module. This is useful for classes wrapped in
one module which are needed in another, such as for inheritance.

50 Chapter 10. PYB11 decorators

https://pybind11.readthedocs.io/en/stable/advanced/functions.html?highlight=noconvert#non-converting-arguments
https://pybind11.readthedocs.io/en/stable/advanced/functions.html?highlight=noconvert#non-converting-arguments
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-policies

CHAPTER 11

PYB11 special functions and classes

This section describes the special functions and classes defined in PYB11Generator for use in createing python bind-
ings. Note we use the convention that PYB11 internals always start with the PYB11 prefix.

PYB11generateModule(pymodule[, modname=None, filename=None])
Inspect the function and class definitions in pymodule, and write a C++ file containing pybind11 statements
to bind those interfaces.

• pymodule: the module to be introspected for the interface

• modname: optionally specify a different name for the generated Python module to be imported under.
Defaults to pymodule.

• filename: a file name for the generated C++ file. If specified, the output is written to the given name,
otherwise output will be written to pymodule.cc

PYB11TemplateFunction(func_template, template_parameters[, cppname = None, pyname = None, do-
cext = ""])

Instantiate a function template (func_template) that was decorated by @PYB11template.

• func_template: The template function definition

• template_parameters: A single string (for a single template parameter function) or tuple of strings
(for multiple template parameters), one for each template parameter defined by @PYB11template on
func_template.

• cppname: The name of the C++ function template, if different from that used for func_template.

• pyname: The name of the resulting Python function; defaults to the name of the instance created for this
invocation of PYB11TemplateFunction.

• docext: An optional string extension to be applied to the docstring associated with func_template.

PYB11attr([value=None, pyname=None])
Create an attribute in a module; corresponds to the pybind11 command attr.

• value: define the C++ name this variable corresponds to. If None, defaults to the name of the local
python variable.

51

PYB11Generator Documentation, Release 2.0

• pyname: define the generated python attribte name. If None, defaults to the name of the local python
variable.

PYB11readwrite([static=False, pyname=None, cppname=None, returnpolicy=None, doc=None])
Define a readwrite class attribute; corresponds to pybind11 def_readwrite.

• static: If True, specifies the bound attribute is static.

• pyname: Optionally specify the Python name of the attribute. If None, assumes the Python
name is the name of Python variable instance.

• cppname: Optionally specify the C++ name of the attribute. If None, assumes the C++ name
is the name of Python variable instance.

• returnpolicy: Specify a special return policy for how to handle the memory of the return value. Read
pybind11 documentation at Return value policies.

• doc: Optionally give a docstring.

PYB11readonly([static=False, pyname=None, cppname=None, returnpolicy=None, doc=None])
Define a readonly class attribute; corresponds to pybind11 def_readonly.

• static: If True, specifies the bound attribute is static.

• pyname: Optionally specify the Python name of the attribute. If None, assumes the Python name is the
name of Python variable instance.

• cppname: Optionally specify the C++ name of the attribute. If None, assumes the C++ name is the name
of Python variable instance.

• returnpolicy: Specify a special return policy for how to handle the memory of the return value. Read
pybind11 documentation at Return value policies.

• doc: Optionally give a docstring.

PYB11property([returnType = None, getter = None, setter = None, doc = None, getterraw = None, setter-
raw = None, getterconst = True, setterconst = False, static = None, returnpolicy = None
])

Helper to setup a class property.

• returnType: Specify the C++ type of the property

• getter: A string with the name of the getter method. If None, assumes the getter C++ specification
looks like returnType (klass::*)() const.

• setter: A string with the name of the setter method. If None, assumes the setter C++ specification
looks like void (klass::*)(returnType& val).

• doc: Specify a document string for the property.

• getterraw: Optionally specify raw coding for the getter method. Generally this is used to insert a C++
lambda function. Only one of getter or getterraw may be specified.

• setterraw: Optionally specify raw coding for the setter method. Generally this is used to insert a C++
lambda function. Only one of setter or setterraw may be specified.

• getterconst: Specify if getter is a const method.

• setterconst: Specify if setter is a const method.

• static: If True, make this a static property.

• returnpolicy: Specify a special return policy for how to handle the memory of the return value. Read
pybind11 documentation at Return value policies.

52 Chapter 11. PYB11 special functions and classes

https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies

PYB11Generator Documentation, Release 2.0

PYB11TemplateMethod(func_template, template_parameters[, cppname = None, pyname = None, docext
= ""])

Instantiate a class method (func_template) that was decorated by @PYB11template.

• func_template: The template method definition

• template_parameters: A single string (for a single template parameter method) or tuple of strings
(for multiple template parameters), one for each template parameter defined by @PYB11template on
func_template.

• cppname: The name of the C++ method template, if different from that used for func_template.

• pyname: The name of the resulting Python method; defaults to the name of the instance created for this
invocation of PYB11TemplateMethod.

• docext: An optional string extension to be applied to the docstring associated with func_template.

PYB11TemplateClass(klass_template, template_parameters[, cppname = None, pyname = None, docext
= ""])

Instantiate a class template (klass_template) that was decorated by @PYB11template.

• klass_template: The template class definition

• template_parameters: A single string (for a single template parameter class) or tuple of strings
(for multiple template parameters), one for each template parameter defined by @PYB11template on
klass_template.

• cppname: The name of the C++ class template, if different from that used for klass_template.

• pyname: The name of the resulting Python class; defaults to the name of the instance created for this
invocation of PYB11TemplateClass.

• docext: An optional string extension to be applied to the docstring associated with klass_template.

PYB11enum(values[, name=None, namespace="", cppname=None, export_values=False, doc=None])
Declare a C++ enum for wrapping in pybind11 – see pybind11 docs.

• values: a tuple of strings listing the possible values for the enum

• name: set the name of enum type in Python. None defaults to the name of the instance given this enum
declaration instance.

• namespace: an optional C++ namespace the enum lives in.

• cppname: the C++ name of the enum. None defaults to the same as name.

• export_values: if True, causes the enum values to be exported into the enclosing scope (like an old-style
C enum).

• doc: an optional document string.

PYB11_bind_vector(element[, opaque=False, local=None])
Bind an STL::vector explicitly. This is essentially a thin wrapper around the pybind11 py::bind_vector
function (see Binding STL containers).

• element: the C++ element type of the std::vector

• opaque: if True, causes the bound STL vector to be “opaque”, so elements can be changed in place
rather than accessed as copies. See Binding STL containers.

• local: determines whether the binding of the STL vector should be module local or not; once again, see
Binding STL containers.

PYB11_bind_map(key, value[, opaque=False, local=None])
Bind an STL::map explicitly. This is a thin wrapper around the pybind11 py::bind_map function (see
Binding STL containers).

53

https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind

PYB11Generator Documentation, Release 2.0

• key: the C++ key type

• value: the C++ value type

• opaque: if True, causes the bound STL map to be “opaque”, so elements can be changed in place rather
than accessed as copies. See Binding STL containers.

• local: determines whether the binding of the STL map should be module local or not; once again, see
Binding STL containers.

PYB11_inject(fromcls, tocls[, virtual=None, pure_virtual=None])
Convenience method to inject methods from class fromcls into tocls. This is intended as a utility to help
avoiding writing redundant methods common to many classes over and over again. Instead a convenience class
can be defined containing the shared methods (typically screened from generation by @PYB11ignore), and
then PYB11_inject is used to copy those methods into the target classes.

• fromcls: Python class with methods we want to copy from.

• tocls: Python class we’re copying methods to.

• virtual: if True, force all methods we’re copying to be treated as virtual.

• pure_virtual: if True, force all methods we’re copying to be treated as pure virtual.

54 Chapter 11. PYB11 special functions and classes

https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#stl-bind

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

55

PYB11Generator Documentation, Release 2.0

56 Chapter 12. Indices and tables

Index

P
PYB11_bind_map() (built-in function), 53
PYB11_bind_vector() (built-in function), 53
PYB11_inject() (built-in function), 54
PYB11attr() (built-in function), 51
PYB11call_guard() (built-in function), 50
PYB11const() (built-in function), 50
PYB11cppname() (built-in function), 50
PYB11dynamic_attr() (built-in function), 49
PYB11enum() (built-in function), 53
PYB11generateModule() (built-in function), 51
PYB11holder() (built-in function), 49
PYB11ignore() (built-in function), 49
PYB11implementation() (built-in function), 50
PYB11keepalive() (built-in function), 50
PYB11module() (built-in function), 50
PYB11namespace() (built-in function), 49
PYB11noconvert() (built-in function), 50
PYB11operator() (built-in function), 50
PYB11property() (built-in function), 52
PYB11protected() (built-in function), 50
PYB11pure_virtual() (built-in function), 50
PYB11pycppname() (built-in function), 50
PYB11readonly() (built-in function), 52
PYB11readwrite() (built-in function), 52
PYB11returnpolicy() (built-in function), 50
PYB11singleton() (built-in function), 49
PYB11static() (built-in function), 50
PYB11template() (built-in function), 49
PYB11template_dict() (built-in function), 49
PYB11TemplateClass() (built-in function), 53
PYB11TemplateFunction() (built-in function), 51
PYB11TemplateMethod() (built-in function), 53
PYB11virtual() (built-in function), 50

57

	Introduction to PYB11Generator
	Installation
	The basics: how to generate pybind11 code using PYB11Generator
	A first example start to finish

	Functions
	Ordinary and overloaded functions
	Default argument values
	C++ template functions
	Explicitly defining the binding implementation for a function
	Preventing automatic casting of arguments

	Classes
	Constructors
	Inheritance
	Methods
	Special class operators and methods
	Templated methods
	Attributes
	Properties
	Dynamic attributes
	Singletons
	Templated classes

	Enums
	Memory management
	Class holder types
	Return value policies
	Call policies
	Call guards

	STL containers
	std::vector
	std::map

	Complications and corner cases
	Cross-module inheritance
	Non-templated class inheriting from a templated class
	Templated class inheritance with template parameter changes

	Using CMake to build PYB11Generator modules
	PYB11 reserved variables
	PYB11 variables for classes

	PYB11 decorators
	PYB11 special functions and classes
	Indices and tables
	Index

